[unknown]

Masanori Adachi[1]; Judith Brinkschulte[2]

  • [1] Pohang University of Science and Technology, Center for Geometry and its Applications, Pohang 790-784 (Republic of Korea) Nagoya University, Graduate School of Mathematics, Nagoya 464-8602 (Japan)
  • [2] Universität Leipzig, Mathematisches Institut, PF 100920, D-04009 Leipzig (Germany)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-23
  • ISSN: 0373-0956

How to cite

top

Adachi, Masanori, and Brinkschulte, Judith. "null." Annales de l’institut Fourier 0.0 (0): 1-23. <http://eudml.org/doc/275337>.

@article{Adachi0,
affiliation = {Pohang University of Science and Technology, Center for Geometry and its Applications, Pohang 790-784 (Republic of Korea) Nagoya University, Graduate School of Mathematics, Nagoya 464-8602 (Japan); Universität Leipzig, Mathematisches Institut, PF 100920, D-04009 Leipzig (Germany)},
author = {Adachi, Masanori, Brinkschulte, Judith},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-23},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275337},
volume = {0},
year = {0},
}

TY - JOUR
AU - Adachi, Masanori
AU - Brinkschulte, Judith
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 23
LA - eng
UR - http://eudml.org/doc/275337
ER -

References

top
  1. M. Adachi, J. Brinkschulte, A global estimate for the Diederich–Fornaess index of weakly pseudoconvex domains Zbl1334.32013
  2. Masanori Adachi, A local expression of the Diederich–Fornaess exponent and the exponent of conformal harmonic measures, Bull. Braz. Math. Soc. (N.S.) 46 (2015), 65-79 Zbl06432716
  3. Aurel Bejancu, Sharief Deshmukh, Real hypersurfaces of C P n with non-negative Ricci curvature, Proc. Amer. Math. Soc. 124 (1996), 269-274 Zbl0866.53041
  4. C. Camacho, A. Lins Neto, P. Sad, Minimal sets of foliations on complex projective spaces, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 187-203 Zbl0682.57012
  5. Jianguo Cao, Mei-Chi Shaw, A new proof of the Takeuchi theorem, Lecture notes of Seminario Interdisciplinare di Matematica. Vol. IV (2005), 65-72, S.I.M. Dep. Mat. Univ. Basilicata, Potenza Zbl1108.32013
  6. Dominique Cerveau, Minimaux des feuilletages algébriques de C P ( n ) , Ann. Inst. Fourier (Grenoble) 43 (1993), 1535-1543 Zbl0803.32018
  7. Jean-Pierre Demailly, Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511 Zbl0507.32021
  8. Bertrand Deroin, Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive, Ann. Sci. École Norm. Sup. (4) 38 (2005), 57-75 Zbl1070.37031
  9. Siqi Fu, Mei-Chi Shaw, The Diederich–Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries Zbl06551701
  10. Samuel I. Goldberg, Shoshichi Kobayashi, Holomorphic bisectional curvature, J. Differential Geom. 1 (1967), 225-233 Zbl0169.53202
  11. R. E. Greene, H. Wu, On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg 47 (1978), 171-185 Zbl0431.32017
  12. Phillip A. Griffiths, The extension problem in complex analysis. II. Embeddings with positive normal bundle, Amer. J. Math. 88 (1966), 366-446 Zbl0147.07502
  13. Gennadi M. Henkin, Andrei Iordan, Regularity of ¯ on pseudoconcave compacts and applications, Asian J. Math. 4 (2000), 855-883 Zbl0998.32021
  14. Lars Hörmander, L 2 estimates and existence theorems for the ¯ operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002
  15. Andrei Iordan, Fanny Matthey, Régularité de l’opérateur ¯ et théorème de Siu sur la non-existence d’hypersurfaces Levi-plates dans l’espace projectif complexe ℂℙ n , n 3 , C. R. Math. Acad. Sci. Paris 346 (2008), 395-400 Zbl1138.32021
  16. Alcides Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble) 49 (1999), 1369-1385 Zbl0963.32022
  17. Kazuko Matsumoto, Levi form of logarithmic distance to complex submanifolds and its application to developability, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday 42 (2004), 203-207, Math. Soc. Japan, Tokyo Zbl1080.32035
  18. Takeo Ohsawa, Kählerity and pseudoconvexity 
  19. Takeo Ohsawa, Nessim Sibony, Bounded p.s.h. functions and pseudoconvexity in Kähler manifold, Nagoya Math. J. 149 (1998), 1-8 Zbl0911.32027
  20. Yum-Tong Siu, Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension 3 , Ann. of Math. (2) 151 (2000), 1217-1243 Zbl0980.53065
  21. Emil J. Straube, Lectures on the L 2 -Sobolev theory of the ¯ -Neumann problem, (2010), European Mathematical Society (EMS), Zürich Zbl1247.32003
  22. Akira Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159-181 Zbl0141.08804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.