[unknown]
Masanori Adachi[1]; Judith Brinkschulte[2]
- [1] Pohang University of Science and Technology, Center for Geometry and its Applications, Pohang 790-784 (Republic of Korea) Nagoya University, Graduate School of Mathematics, Nagoya 464-8602 (Japan)
- [2] Universität Leipzig, Mathematisches Institut, PF 100920, D-04009 Leipzig (Germany)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-23
- ISSN: 0373-0956
Access Full Article
topHow to cite
topAdachi, Masanori, and Brinkschulte, Judith. "null." Annales de l’institut Fourier 0.0 (0): 1-23. <http://eudml.org/doc/275337>.
@article{Adachi0,
affiliation = {Pohang University of Science and Technology, Center for Geometry and its Applications, Pohang 790-784 (Republic of Korea) Nagoya University, Graduate School of Mathematics, Nagoya 464-8602 (Japan); Universität Leipzig, Mathematisches Institut, PF 100920, D-04009 Leipzig (Germany)},
author = {Adachi, Masanori, Brinkschulte, Judith},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-23},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275337},
volume = {0},
year = {0},
}
TY - JOUR
AU - Adachi, Masanori
AU - Brinkschulte, Judith
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 23
LA - eng
UR - http://eudml.org/doc/275337
ER -
References
top- M. Adachi, J. Brinkschulte, A global estimate for the Diederich–Fornaess index of weakly pseudoconvex domains Zbl1334.32013
- Masanori Adachi, A local expression of the Diederich–Fornaess exponent and the exponent of conformal harmonic measures, Bull. Braz. Math. Soc. (N.S.) 46 (2015), 65-79 Zbl06432716
- Aurel Bejancu, Sharief Deshmukh, Real hypersurfaces of with non-negative Ricci curvature, Proc. Amer. Math. Soc. 124 (1996), 269-274 Zbl0866.53041
- C. Camacho, A. Lins Neto, P. Sad, Minimal sets of foliations on complex projective spaces, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 187-203 Zbl0682.57012
- Jianguo Cao, Mei-Chi Shaw, A new proof of the Takeuchi theorem, Lecture notes of Seminario Interdisciplinare di Matematica. Vol. IV (2005), 65-72, S.I.M. Dep. Mat. Univ. Basilicata, Potenza Zbl1108.32013
- Dominique Cerveau, Minimaux des feuilletages algébriques de , Ann. Inst. Fourier (Grenoble) 43 (1993), 1535-1543 Zbl0803.32018
- Jean-Pierre Demailly, Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511 Zbl0507.32021
- Bertrand Deroin, Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive, Ann. Sci. École Norm. Sup. (4) 38 (2005), 57-75 Zbl1070.37031
- Siqi Fu, Mei-Chi Shaw, The Diederich–Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries Zbl06551701
- Samuel I. Goldberg, Shoshichi Kobayashi, Holomorphic bisectional curvature, J. Differential Geom. 1 (1967), 225-233 Zbl0169.53202
- R. E. Greene, H. Wu, On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg 47 (1978), 171-185 Zbl0431.32017
- Phillip A. Griffiths, The extension problem in complex analysis. II. Embeddings with positive normal bundle, Amer. J. Math. 88 (1966), 366-446 Zbl0147.07502
- Gennadi M. Henkin, Andrei Iordan, Regularity of on pseudoconcave compacts and applications, Asian J. Math. 4 (2000), 855-883 Zbl0998.32021
- Lars Hörmander, estimates and existence theorems for the operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002
- Andrei Iordan, Fanny Matthey, Régularité de l’opérateur et théorème de Siu sur la non-existence d’hypersurfaces Levi-plates dans l’espace projectif complexe , , C. R. Math. Acad. Sci. Paris 346 (2008), 395-400 Zbl1138.32021
- Alcides Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble) 49 (1999), 1369-1385 Zbl0963.32022
- Kazuko Matsumoto, Levi form of logarithmic distance to complex submanifolds and its application to developability, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday 42 (2004), 203-207, Math. Soc. Japan, Tokyo Zbl1080.32035
- Takeo Ohsawa, Kählerity and pseudoconvexity
- Takeo Ohsawa, Nessim Sibony, Bounded p.s.h. functions and pseudoconvexity in Kähler manifold, Nagoya Math. J. 149 (1998), 1-8 Zbl0911.32027
- Yum-Tong Siu, Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension , Ann. of Math. (2) 151 (2000), 1217-1243 Zbl0980.53065
- Emil J. Straube, Lectures on the -Sobolev theory of the -Neumann problem, (2010), European Mathematical Society (EMS), Zürich Zbl1247.32003
- Akira Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159-181 Zbl0141.08804
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.