Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive

Bertrand Deroin

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 1, page 57-75
  • ISSN: 0012-9593

How to cite

top

Deroin, Bertrand. "Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive." Annales scientifiques de l'École Normale Supérieure 38.1 (2005): 57-75. <http://eudml.org/doc/82654>.

@article{Deroin2005,
author = {Deroin, Bertrand},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {CR submanifolds; Levi form; foliation by holomorphic curves},
language = {fre},
number = {1},
pages = {57-75},
publisher = {Elsevier},
title = {Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive},
url = {http://eudml.org/doc/82654},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Deroin, Bertrand
TI - Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 1
SP - 57
EP - 75
LA - fre
KW - CR submanifolds; Levi form; foliation by holomorphic curves
UR - http://eudml.org/doc/82654
ER -

References

top
  1. [1] Ahlfors L., Zur Theorie der Überlagerungflächen, Acta Math.65, 157–194. Zbl0012.17204MR1555403JFM61.0365.03
  2. [2] Arnold V., Équations différentielles ordinaires, vol. 2, Mir, Moscow. Zbl0296.34002MR361232
  3. [3] Berndtsson B., Sibony N., The ¯ -equation on a positive current, Invent. Math.147 (2) (2002) 371-428. Zbl1031.32005MR1881924
  4. [4] Camacho C., Lins Neto A., Sad P., Minimal sets of foliations on complex projective spaces, Inst. Hautes Études Sci. Publ. Math.68 (1988) 187-203. Zbl0682.57012MR1001454
  5. [5] Bonatti C., Langevin R., Moussu R., Feuilletages de C P n : de l’holonomie hyperbolique pour les minimaux exceptionnels, Inst. Hautes Études Sci. Publ. Math.75 (1992) 123-134. Zbl0782.32023
  6. [6] Candel A., Uniformization of surface laminations, Ann. Sci. École Norm. Sup. (4)26 (4) (1993) 489-516. Zbl0785.57009MR1235439
  7. [7] Candel A., The harmonic measures of Lucy Garnett, Adv. Math.176 (2) (2003) 187-247. Zbl1031.58003MR1982882
  8. [8] Cao J., Shaw M.C., Wang L., Estimates for the ¯ -Neumann problem and nonexistence of C 2 Levi-flat hypersurfaces in C P n , Math. Z. (2004). Zbl1057.32012
  9. [9] Cerveau D., Minimaux des feuilletages algébriques de C P n , Ann. Inst. Fourier43 (5) (1993) 1535-1543. Zbl0803.32018MR1275208
  10. [10] Connes A., A survey of foliations and operator algebras, in: Proc. of Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 521-628. Zbl0531.57023MR679730
  11. [11] Deroin B., Laminations par variétés complexes, Thèse ENS Lyon, 2003. 
  12. [12] Deroin B., Laminations dans les espaces projectifs complexes, math.CV/0410376. 
  13. [13] Frankel S., Harmonic analysis of surface group representations to Diff S 1 and Milnor type inequalities, Prépublication de l’École Polytechnique 1125, 1996. 
  14. [14] Garnett L., Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal.51 (3) (1983) 285-311. Zbl0524.58026MR703080
  15. [15] Ghys É., Gauss–Bonnet theorem for 2-dimensional foliations, J. Funct. Anal.77 (1) (1988) 51-59. Zbl0656.57017MR930390
  16. [16] Hurder S., Mitsumatsu Y., The intersection product of transverse invariant measures, Indiana Univ. Math. J.40 (4) (1991) 1169-1183. Zbl0769.57018MR1142709
  17. [17] Iordan A., On the non-existence of smooth Levi-flat hypersurfaces in C P n , in: Proceedings of the Memorial Conference of K. Oka's centennial birthday on Complex Analysis in Several Variables, Kyoto, Nara, 2001. Zbl1073.32019
  18. [18] Malliavin P., Diffusions et géométrie différentielle globale, Centro Internationale Matematico Estivo, Varenne, France, août 1975. MR651927
  19. [19] Mañé R., Sad P., Sullivan D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4)16 (2) (1983) 193-217. Zbl0524.58025MR732343
  20. [20] Ohsawa T., Sibony N., Kähler identity on Levi-flat manifolds and application to the embedding, Nagoya Math. J.158 (2000) 87-93. Zbl0976.32021MR1766573
  21. [21] Rudin W., Analyse réelle et complexe, Masson, Paris. Zbl1147.26300MR662565
  22. [22] Siu Y.-T., ¯ -Regularity for weakly pseudoconvex domains in compact hermitian symmetric spaces with respect to invariant metrics, Ann. of Math.156 (2) (2002) 595-621. Zbl1030.53071MR1933078
  23. [23] Sullivan D., Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math.36 (1976) 225-255. Zbl0335.57015MR433464
  24. [24] Sullivan D., Thurston W., Extending holomorphic motions, Acta Math.157 (3–4) (1986) 243-257. Zbl0619.30026MR857674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.