[unknown]
- [1] Bâtiment 425 C.N.R.S. et Université Paris-Sud 91405 Orsay Cedex France
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-53
- ISSN: 0373-0956
Access Full Article
topHow to cite
topBreuil, Christophe. "null." Annales de l’institut Fourier 0.0 (0): 1-53. <http://eudml.org/doc/275375>.
@article{Breuil0,
affiliation = {Bâtiment 425 C.N.R.S. et Université Paris-Sud 91405 Orsay Cedex France},
author = {Breuil, Christophe},
journal = {Annales de l’institut Fourier},
language = {fre},
number = {0},
pages = {1-53},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275375},
volume = {0},
year = {0},
}
TY - JOUR
AU - Breuil, Christophe
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 53
LA - fre
UR - http://eudml.org/doc/275375
ER -
References
top- Christophe Breuil, Remarks on some locally -analytic representations of in the crystalline case, Non-abelian fundamental groups and Iwasawa theory 393 (2012), 212-238, Cambridge Univ. Press, Cambridge Zbl1312.11045
- Christophe Breuil, Vers le socle localement analytique pour II, Math. Ann. 361 (2015), 741-785 Zbl06421500
- Christophe Breuil, Florian Herzig, Ordinary representations of and fundamental algebraic representations, Duke Math. J. 164 (2015), 1271-1352 Zbl1321.22019
- Christophe Breuil, Ariane Mézard, Multiplicités modulaires et représentations de et de en , Duke Math. J. 115 (2002), 205-310 Zbl1042.11030
- Christophe Breuil, Vytautas Paškunas, Towards a modulo Langlands correspondence for , Mem. Amer. Math. Soc. 216 (2012) Zbl1245.22010
- Christophe Breuil, Peter Schneider, First steps towards -adic Langlands functoriality, J. Reine Angew. Math. 610 (2007), 149-180 Zbl1180.11036
- Colin J. Bushnell, Representations of reductive -adic groups : localization of Hecke algebras and applications, J. London Math. Soc. (2) 63 (2001), 364-386 Zbl1017.22011
- Kevin Buzzard, Fred Diamond, Frazer Jarvis, On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J. 155 (2010), 105-161 Zbl1227.11070
- Pierre Colmez, La série principale unitaire de , Astérisque (2010), 213-262
- Pierre Colmez, Représentations de et -modules, Astérisque (2010), 281-509 Zbl1218.11107
- Pierre Colmez, Jean-Marc Fontaine, Construction des représentations -adiques semi-stables, Invent. Math. 140 (2000), 1-43 Zbl1010.14004
- François Digne, Jean Michel, Representations of finite groups of Lie type, 21 (1991), Cambridge University Press, Cambridge Zbl0815.20014
- Matthew Emerton, Jacquet modules of locally analytic representations of -adic reductive groups II. The relation to parabolic induction Zbl1117.22008
- Matthew Emerton, Jacquet modules of locally analytic representations of -adic reductive groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4) 39 (2006), 775-839 Zbl1117.22008
- Matthew Emerton, Ordinary parts of admissible representations of -adic reductive groups I. Definition and first properties, Astérisque (2010), 355-402 Zbl1205.22013
- Jean-Marc Fontaine, Représentations -adiques potentiellement semi-stables, Astérisque (1994), 321-347 Zbl0873.14020
- Jean-Marc Fontaine, Représentations -adiques semi-stables, Astérisque (1994), 113-184 Zbl0865.14009
- Toby Gee, Automorphic lifts of prescribed types, Math. Ann. 350 (2011), 107-144 Zbl1276.11085
- Toby Gee, On the weights of mod Hilbert modular forms, Invent. Math. 184 (2011), 1-46 Zbl1280.11029
- Toby Gee, Mark Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi 2 (2014) Zbl06391704
- Florian Herzig, The weight in a Serre-type conjecture for tame -dimensional Galois representations, Duke Math. J. 149 (2009), 37-116 Zbl1232.11065
- Yongquan Hu, Normes invariantes et existence de filtrations admissibles, J. Reine Angew. Math. 634 (2009), 107-141 Zbl1214.11132
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category , 94 (2008), American Mathematical Society, Providence, RI Zbl1177.17001
- Jan Kohlhaase, Invariant distributions on -adic analytic groups, Duke Math. J. 137 (2007), 19-62 Zbl1133.11066
- Ruochuan Liu, Locally analytic vectors of some crystabelian representations of , Compos. Math. 148 (2012), 28-64 Zbl1267.11059
- Sascha Orlik, Benjamin Schraen, The Jordan-Hölder series of the locally analytic Steinberg representation, Doc. Math. 19 (2014), 647-671 Zbl1300.22012
- Sascha Orlik, Matthias Strauch, On the irreducibility of locally analytic principal series representations, Represent. Theory 14 (2010), 713-746 Zbl1247.22018
- Sascha Orlik, Matthias Strauch, On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28 (2015), 99-157 Zbl1307.22009
- Dipendra Prasad, Locally algebraic representations of -adic groups, Represent. Theory 5 (2001), 111-128 Zbl1028.17007
- Michael M. Schein, Weights in Serre’s conjecture for Hilbert modular forms : the ramified case, Israel J. Math. 166 (2008), 369-391 Zbl1197.11063
- Tobias Schmidt, Analytic vectors in continuous -adic representations, Compos. Math. 145 (2009), 247-270 Zbl1160.22009
- P. Schneider, J. Teitelbaum, Banach-Hecke algebras and -adic Galois representations, Doc. Math. (2006), 631-684 Zbl1140.11026
- Peter Schneider, Nonarchimedean functional analysis, (2002), Springer-Verlag, Berlin Zbl0998.46044
- Peter Schneider, Jeremy Teitelbaum, Locally analytic distributions and -adic representation theory, with applications to , J. Amer. Math. Soc. 15 (2002), 443-468 (electronic) Zbl1028.11071
- Peter Schneider, Jeremy Teitelbaum, Algebras of -adic distributions and admissible representations, Invent. Math. 153 (2003), 145-196 Zbl1028.11070
- Benjamin Schraen, Représentations -adiques de et catégories dérivées, Israel J. Math. 176 (2010), 307-361 Zbl1210.11066
- A. V. Zelevinsky, Induced representations of reductive -adic groups. II. On irreducible representations of , Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210 Zbl0441.22014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.