Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties

Matthew Emerton

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 5, page 775-839
  • ISSN: 0012-9593

How to cite

top

Emerton, Matthew. "Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties." Annales scientifiques de l'École Normale Supérieure 39.5 (2006): 775-839. <http://eudml.org/doc/82700>.

@article{Emerton2006,
author = {Emerton, Matthew},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {locally analytic representations; essentially admissible; reductive group; local field; Jacquet functor; Levi quotient},
language = {eng},
number = {5},
pages = {775-839},
publisher = {Elsevier},
title = {Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties},
url = {http://eudml.org/doc/82700},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Emerton, Matthew
TI - Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 5
SP - 775
EP - 839
LA - eng
KW - locally analytic representations; essentially admissible; reductive group; local field; Jacquet functor; Levi quotient
UR - http://eudml.org/doc/82700
ER -

References

top
  1. [1] Ash A., Stevens G., p-Adic deformations of arithmetic cohomology, Preprint. MR1464013
  2. [2] Bosch S., Güntzer U., Remmert R., Non-Archimedean Analysis, Springer, Berlin, 1984. Zbl0539.14017MR746961
  3. [3] Bourbaki N., Elements of Mathematics. Topological Vector Spaces, Springer, Berlin, 1987, (Chapters 1–5). Zbl1106.46003MR910295
  4. [4] Cartier P., Representations of p -adic groups: A survey, in: Automorphic Forms, Representations, and L-Functions, Part 1, Proc. Symp. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 111-155. Zbl0421.22010MR546593
  5. [5] Casselman W., Introduction to the theory of admissible representations of p-adic reductive groups, unpublished notes distributed by P. Sally, draft dated May 7, 1993. Available electronically at, http://www.math.ubc.ca/people/faculty/cass/research.html. 
  6. [6] Coleman R., P-adic Banach spaces and families of modular forms, Invent. Math.127 (1997) 417-479. Zbl0918.11026MR1431135
  7. [7] Coleman R., Mazur B., The eigencurve, in: Scholl A.J., Taylor R.L. (Eds.), Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254, Cambridge University Press, Cambridge, 1998, pp. 1-113. Zbl0932.11030MR1696465
  8. [8] Emerton M., Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Amer. Math. Soc., in press. Available electronically at, http://www.math.northwestern.edu/~emerton. 
  9. [9] Emerton M., On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math.164 (2006) 1-84. Zbl1090.22008MR2207783
  10. [10] Emerton M., Locally analytic representation theory of p-adic reductive groups: A summary of some recent developments, in: Burns D., Buzzard K., Nekovar J. (Eds.), Proceedings of a Symposium on L-Functions and Galois Representations (Durham, 2004), in press. Available electronically at, http://www.math.northwestern.edu/~emerton. 
  11. [11] Emerton M., Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, in preparation. 
  12. [12] Féaux de Lacroix C.T., Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Thesis, Köln 1997, Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, 1999, pp. 1–111. Zbl0963.22009MR1691735
  13. [13] Knapp A.W., Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton University Press, Princeton, NJ, 1986. Zbl0604.22001MR855239
  14. [14] Prasad D., Locally algebraic representations of p-adic groups, Appendix to [18], Represent. Theory5 (2001) 125-127. MR1835001
  15. [15] Schneider P., Nonarchimedean Functional Analysis, Springer Monographs in Math., Springer, Berlin, 2002. Zbl0998.46044MR1869547
  16. [16] Schneider P., Teitelbaum J., p-adic boundary values, Astérisque278 (2002) 51-123. Zbl1051.14024MR1922824
  17. [17] Schneider P., Teitelbaum J., Locally analytic distributions and p-adic representation theory, with applications to GL 2 , J. Amer. Math. Soc.15 (2001) 443-468. Zbl1028.11071MR1887640
  18. [18] Schneider P., Teitelbaum J., U g -finite locally analytic representations, Represent. Theory5 (2001) 111-128. Zbl1028.17007MR1835001
  19. [19] Schneider P., Teitelbaum J., Banach space representations and Iwasawa theory, Israel J. Math.127 (2002) 359-380. Zbl1006.46053MR1900706
  20. [20] Schneider P., Teitelbaum J., Algebras of p-adic distributions and admissible representations, Invent. Math.153 (2003) 145-196. Zbl1028.11070MR1990669
  21. [21] Serre J.-P., Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math. IHÉS12 (1962) 69-85. Zbl0104.33601MR144186
  22. [22] Serre J.-P., Lie Algebras and Lie Groups, W.A. Benjamin, 1965. Zbl0132.27803MR218496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.