[unknown]
- [1] Max-Planck Institut für Mathematik Vivatsgasse 7 53111 Bonn (Germany)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-39
- ISSN: 0373-0956
Access Full Article
topHow to cite
topDupont, Clément. "null." Annales de l’institut Fourier 0.0 (0): 1-39. <http://eudml.org/doc/275377>.
@article{Dupont0,
affiliation = {Max-Planck Institut für Mathematik Vivatsgasse 7 53111 Bonn (Germany)},
author = {Dupont, Clément},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-39},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275377},
volume = {0},
year = {0},
}
TY - JOUR
AU - Dupont, Clément
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 39
LA - eng
UR - http://eudml.org/doc/275377
ER -
References
top- Paolo Aluffi, Chern classes of free hypersurface arrangements, J. Singul. 5 (2012), 19-32 Zbl1292.14007
- V. I. Arnolʼd, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227-231
- Christin Bibby, Cohomology of abelian arrangements, (2013) Zbl06573157
- Christin Bibby, Justin Hilburn, Quadratic-linear duality and rational homotopy theory of chordal arrangements, (2014)
- S. Bloch, Motives, the fundamental group, and graphs, (2012)
- Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnold], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401 (1973), 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin Zbl0277.55003
- Fabrizio Catanese, Serkan Hoşten, Amit Khetan, Bernd Sturmfels, The maximum likelihood degree, Amer. J. Math. 128 (2006), 671-697 Zbl1123.13019
- C. De Concini, C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459-494 Zbl0842.14038
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5-57
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), 5-77
- Igor V. Dolgachev, Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), 35-64 Zbl1156.14015
- William Fulton, Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), 183-225 Zbl0820.14037
- E. Getzler, Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96 (1999), 175-203 Zbl0986.14005
- Yi Hu, A compactification of open varieties, Trans. Amer. Math. Soc. 355 (2003), 4737-4753 Zbl1083.14004
- Igor Kříž, On the rational homotopy type of configuration spaces, Ann. of Math. (2) 139 (1994), 227-237 Zbl0829.55008
- Jean Leray, Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81-180 Zbl0199.41203
- Li Li, Wonderful compactification of an arrangement of subvarieties, Michigan Math. J. 58 (2009), 535-563 Zbl1187.14060
- Eduard Looijenga, Cohomology of and , Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) 150 (1993), 205-228, Amer. Math. Soc., Providence, RI Zbl0814.14029
- John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978), 137-204 Zbl0401.14003
- Peter Orlik, Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189 Zbl0432.14016
- Peter Orlik, Hiroaki Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001
- Chris A. M. Peters, Joseph H. M. Steenbrink, Mixed Hodge structures, 52 (2008), Springer-Verlag, Berlin
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007
- Hiroaki Terao, Forms with logarithmic pole and the filtration by the order of the pole, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), 673-685, Kinokuniya Book Store, Tokyo Zbl0399.14010
- Burt Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), 1057-1067 Zbl0857.57025
- Claire Voisin, Hodge theory and complex algebraic geometry. I, 76 (2002), Cambridge University Press, Cambridge Zbl1032.14001
- S. Yuzvinskiĭ, Orlik-Solomon algebras in algebra and topology, Uspekhi Mat. Nauk 56 (2001), 87-166
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.