The systolic constant of orientable Bieberbach 3-manifolds
Chady El Mir[1]; Jacques Lafontaine[2]
- [1] Department of Mathematics and computer science, Beirut Arab University, P.O.Box 11 - 50 - 20 Riad El Solh 11072809, Beirut, Lebanon
- [2] Institut de Mathématiques et Modélisation de Montpellier, CNRS, UMR 5149, Université Montpellier 2, CC 0051, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 3, page 623-648
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topEl Mir, Chady, and Lafontaine, Jacques. "The systolic constant of orientable Bieberbach 3-manifolds." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 623-648. <http://eudml.org/doc/275394>.
@article{ElMir2013,
abstract = {A compact manifold is called Bieberbach if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact $3$-dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds ($C_2$) which has interesting geometric properties: it is extremal in its conformal class and the systole is realized by “very many” geodesics.},
affiliation = {Department of Mathematics and computer science, Beirut Arab University, P.O.Box 11 - 50 - 20 Riad El Solh 11072809, Beirut, Lebanon; Institut de Mathématiques et Modélisation de Montpellier, CNRS, UMR 5149, Université Montpellier 2, CC 0051, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France},
author = {El Mir, Chady, Lafontaine, Jacques},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {aspherical; systolic ratio; flat metric},
language = {eng},
month = {6},
number = {3},
pages = {623-648},
publisher = {Université Paul Sabatier, Toulouse},
title = {The systolic constant of orientable Bieberbach 3-manifolds},
url = {http://eudml.org/doc/275394},
volume = {22},
year = {2013},
}
TY - JOUR
AU - El Mir, Chady
AU - Lafontaine, Jacques
TI - The systolic constant of orientable Bieberbach 3-manifolds
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 623
EP - 648
AB - A compact manifold is called Bieberbach if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact $3$-dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds ($C_2$) which has interesting geometric properties: it is extremal in its conformal class and the systole is realized by “very many” geodesics.
LA - eng
KW - aspherical; systolic ratio; flat metric
UR - http://eudml.org/doc/275394
ER -
References
top- Babenko (I.).— Souplesse intersystolique forte des variétés fermées et des polyèdres, Ann. Inst. Fourier 52 no. 4, p. 1259-1284 (2002). Zbl1023.53025MR1927080
- Bavard (C.).— Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274, p. 439-441 (1986) Zbl0578.53032MR842624
- Bavard (C.).— Inégalités isosystoliques conformes pour la bouteille de Klein, Geom. Dedicata 27, p. 349-355 (1988). Zbl0667.53033MR960206
- Bavard (C.).— Inégalités isosystoliques conformes, Comment. Math. Helv 67, p. 146-166 (1992). Zbl0783.53041MR1144618
- Bavard (C.).— Une remarque sur la géométrie systolique de la bouteille de Klein, Arch. Math. (Basel) 87 (2006), No 1, p. 72-74 (1993). Zbl1109.53037MR2246408
- Berger (M.).— Systoles et applications selon Gromov, Séminaire N. Bourbaki, exposé 771, Astérisque 216, p. 279-310 (1993). Zbl0789.53040MR1246401
- Burago (D.), Burago (Y.D.), Ivanov (S.).— A course in metric geometry, Graduate studies in Mathematics (33), Amer. Math. Soc., Providence, R.I. (2001). Zbl0981.51016MR1835418
- Calabi (E.).— Extremal isosystolic metrics for compact surfaces, Actes de la table ronde de géométrie différentielle, Semin. Congr 1, Soc.Math.France p. 146-166 (1996). 3). Zbl0884.58029MR1427758
- Charlap (L.S.).— Bieberbach Groups and Flat Manifolds, Springer Universitext, Berlin (1986). Zbl0608.53001MR862114
- Cheeger (J.), Ebin (D.).— Comparison Theorems in Riemannian Geometry, North-Holland Publishing Co., Amsterdam (1975). Zbl1142.53003MR458335
- Elmir (C.), Lafontaine (J.).— Sur la géométrie systolique des variétés de Bieberbach, Geom. Dedicata. 136, p. 95-110 (2008) Zbl1190.53037MR2443345
- Gallot (S.), Hulin (D.), Lafontaine (J.).— Riemannian Geometry, 3rd edition, Springer, Berlin Heidelberg (2004). Zbl0636.53001MR2088027
- Gromov (M.).— Filling Riemannian manifolds, J. Diff. Geom. 18, p. 1-147 (1983) Zbl0515.53037MR697984
- Jenkins (J.A.).— On the existence of certain general extremal metrics, Ann. of Math. 66, p. 440-453 (1957). Zbl0082.06301MR90648
- Katz (M.G.).— Systolic Geometry and Topology, Math. Surveys and Monographs 137, Amer. Math. Soc., Providence, R.I. (2007). Zbl1149.53003MR2292367
- Pu (P.M.).— Some inequalities in certain non-orientable riemannian manifolds. Pacific J. Math. 2, p. 55-71 (1952). Zbl0046.39902MR48886
- Thurston (W.P.).— Three-Dimensional Geometry and Topology, edited by S. Levy, Princeton University Press, Princeton (1997). Zbl0873.57001MR1435975
- Wolf (J.A.).— Spaces of constant curvature, Publish or Perish, Boston (1974). Zbl0281.53034MR343214
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.