Flat 3-webs of degree one on the projective plane

A. Beltrán; M. Falla Luza; D. Marín

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 4, page 779-796
  • ISSN: 0240-2963

Abstract

top
The aim of this work is to study global 3 -webs with vanishing curvature. We wish to investigate degree 3 foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree 3 foliations whose Legendre transform are webs with zero curvature.

How to cite

top

Beltrán, A., Falla Luza, M., and Marín, D.. "Flat 3-webs of degree one on the projective plane." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 779-796. <http://eudml.org/doc/275404>.

@article{Beltrán2014,
abstract = {The aim of this work is to study global $3$-webs with vanishing curvature. We wish to investigate degree $3$ foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree $3$ foliations whose Legendre transform are webs with zero curvature.},
author = {Beltrán, A., Falla Luza, M., Marín, D.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {4},
pages = {779-796},
publisher = {Université Paul Sabatier, Toulouse},
title = {Flat 3-webs of degree one on the projective plane},
url = {http://eudml.org/doc/275404},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Beltrán, A.
AU - Falla Luza, M.
AU - Marín, D.
TI - Flat 3-webs of degree one on the projective plane
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 4
SP - 779
EP - 796
AB - The aim of this work is to study global $3$-webs with vanishing curvature. We wish to investigate degree $3$ foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree $3$ foliations whose Legendre transform are webs with zero curvature.
LA - eng
UR - http://eudml.org/doc/275404
ER -

References

top
  1. Brunella (M.).— Birational geometry of foliations. IMPA (2000). Zbl1082.32022MR1948251
  2. Fischer (G.).— Plane Algebraic Curves, volume 15 of Student Mathematical Library. American Mathematical Society (2001). Zbl0971.14026MR1836037
  3. Hénaut (A.).— Planar web geometry through abelian relations and singularities. Nankai Tracts Math., 11, p. 269-295 (2006). Zbl1133.53012MR2313337
  4. Ince (E.).— Ordinary Differential Equations. Dover Publications (1944). Zbl0063.02971MR10757
  5. Marín (D.), Pereira (J.V.).— Rigid at webs on the projective plane. Asian Journal of Mathematics, 17p. 163-192 (2013). Zbl1330.53020
  6. Pereira (J. V.).— Vector fields, invariant varieties and linear systems. Ann. Inst. Fourier (Grenoble), 51(5)p. 1385-1405 (2001). Zbl1107.37038MR1860669
  7. Pereira (J. V.), Pirio (L.).— Classification of exceptional CDQL webs on compact complex surfaces. IMRN, 12p. 2169-2282 (2010). Zbl1208.53011MR2652221
  8. Pereira (J. V.), Pirio (L.).— An invitation to web geometry. IMPA (2009). Zbl1184.53002MR2536234
  9. Ripoll (O.).— Géométrie des tissus du plan et équations differentielles. Thèse de Doctorat de l’Université Bordeaux 1 (2005). 
  10. Ripoll (O.).— Properties of the connection associated with planar webs and applications. Preprint arXiv:math/0702321v2, (2007). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.