Sur la classification des hexagones hyperboliques à angles droits en dimension 5
François Delgove; Nicolas Retailleau
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 5, page 1049-1061
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDelgove, François, and Retailleau, Nicolas. "Sur la classification des hexagones hyperboliques à angles droits en dimension 5." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 1049-1061. <http://eudml.org/doc/275407>.
@article{Delgove2014,
abstract = {The aim of this paper is to give a classification of the right-angled hyperbolic hexagons in the real hyperbolic space $\{\mathbb\{H\}\}_\{\{\mathbb\{R\}\}\}^\{5\}$, by using a quaternionic distance between geodesics in $\{\mathbb\{H\}\}_\{\{\mathbb\{R\}\}\}^\{5\}$.},
author = {Delgove, François, Retailleau, Nicolas},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {right-angled hexagon; real hyperbolic space; orientation-preserving isometry; Hamilton's quaternions; quaternionic distance; geodesic; cross-ratio; bi-ratio},
language = {eng},
number = {5},
pages = {1049-1061},
publisher = {Université Paul Sabatier, Toulouse},
title = {Sur la classification des hexagones hyperboliques à angles droits en dimension 5},
url = {http://eudml.org/doc/275407},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Delgove, François
AU - Retailleau, Nicolas
TI - Sur la classification des hexagones hyperboliques à angles droits en dimension 5
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 1049
EP - 1061
AB - The aim of this paper is to give a classification of the right-angled hyperbolic hexagons in the real hyperbolic space ${\mathbb{H}}_{{\mathbb{R}}}^{5}$, by using a quaternionic distance between geodesics in ${\mathbb{H}}_{{\mathbb{R}}}^{5}$.
LA - eng
KW - right-angled hexagon; real hyperbolic space; orientation-preserving isometry; Hamilton's quaternions; quaternionic distance; geodesic; cross-ratio; bi-ratio
UR - http://eudml.org/doc/275407
ER -
References
top- Beardon (A. F.).— The geometry of discrete groups, Springer (1983). Zbl0528.30001MR698777
- Bisi (C.) and Gentili (G.).— Möbius transformations and the Poincaré distance in the quaternionic setting, Indiana Univ. Math. J., 350, p. 2729-2764 (2009). Zbl1193.30067MR2603766
- Bonahon (F.).— Low-dimensional geometry : from Euclidean surfaces to hyperbolic knots, Amer. Math. Soc. (2009). Zbl1176.57001MR2522946
- Dieudonné (J.).— Les déterminants sur un corps non commutatif, Bull. Soc. Math. France, 71, p. 27-45(1943). Zbl0028.33904MR12273
- Fathi (A.), Laudenbach (F.), and Poenaru (V.).— Travaux de Thurston sur les surfaces, Astérisque, vol. 66-67, Soc. Math. France. (1979). Zbl0446.57010MR568308
- Fenchel (W.).— Elementary geometry in hyperbolic space, de Gruyter (1989). Zbl0674.51001MR1004006
- Gwynne (E.) and Libine (M.).— On a quaternionic analogue of the cross-ratio, Adv. App. Clifford Algebra, 22, p. 1041-1053 (2012). Zbl1257.15014MR2994138
- Hellegouarch (Y.).— Quaternionic homographies : Application to Ford hyperspheres, Comptes-Rendus Acad. Science Canada, 11, p. 171-176 (1989). Zbl0711.51004MR1010923
- Parizet (J.).— Quaternions et géométrie. Notes de cours sur Internet, http :// www.math.unicaen.fr/lmno/semana/documents/parizet/QuaternionsA.pdf.
- Parker (J. R.).— Hyperbolic spaces, Jyväskylä Lect. in Math., 2 (2008).
- Paulin (F.) and Parkkonen (J.).— Prescribing the behaviour of geodesics in negative curvature, Geom. & Topo., 14, p. 277-392 (2010). Zbl1191.53026MR2578306
- Paulin (F.) and Parkkonen (J.).— On the arithmetic and geometry of binary Hamiltonian forms, Alg. Numb. Theo., 7, p. 75-115 (2013). Zbl1273.11065MR3037891
- Perrin (D.).— Cours d’algèbre, Ellipses (1996).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.