Variational properties of the discrete Hilbert-Einstein functional

Ivan Izmestiev[1]

  • [1] Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin

Actes des rencontres du CIRM (2013)

  • Volume: 3, Issue: 1, page 151-157
  • ISSN: 2105-0597

How to cite

top

Izmestiev, Ivan. "Variational properties of the discrete Hilbert-Einstein functional." Actes des rencontres du CIRM 3.1 (2013): 151-157. <http://eudml.org/doc/275411>.

@article{Izmestiev2013,
affiliation = {Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin},
author = {Izmestiev, Ivan},
journal = {Actes des rencontres du CIRM},
keywords = {infinitesimal rigidity; Minkowski theorem; Weyl problem; Hilbert-Einstein functional},
language = {eng},
month = {11},
number = {1},
pages = {151-157},
publisher = {CIRM},
title = {Variational properties of the discrete Hilbert-Einstein functional},
url = {http://eudml.org/doc/275411},
volume = {3},
year = {2013},
}

TY - JOUR
AU - Izmestiev, Ivan
TI - Variational properties of the discrete Hilbert-Einstein functional
JO - Actes des rencontres du CIRM
DA - 2013/11//
PB - CIRM
VL - 3
IS - 1
SP - 151
EP - 157
LA - eng
KW - infinitesimal rigidity; Minkowski theorem; Weyl problem; Hilbert-Einstein functional
UR - http://eudml.org/doc/275411
ER -

References

top
  1. Alexander D. Alexandrov, Existence of a convex polyhedron and of a convex surface with a given metric, Mat. Sbornik, N. Ser. 11(53) (1942), 15-65 Zbl0061.37603MR13540
  2. Michael T. Anderson, Scalar curvature and the existence of geometric structures on 3-manifolds. I, J. Reine Angew. Math. 553 (2002), 125-182 Zbl1023.53020MR1944810
  3. Michael T. Anderson, Scalar curvature and the existence of geometric structures on 3-manifolds. II, J. Reine Angew. Math. 563 (2003), 115-195 Zbl1066.53061MR2009241
  4. Arthur L. Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl1147.53001MR867684
  5. Wilhelm Blaschke, Gustav Herglotz, Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum, Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Abt. No.2 (1937), 229-230 Zbl0018.23501
  6. Alexander I. Bobenko, Ivan Izmestiev, Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes, Ann. Inst. Fourier (Grenoble) 58 (2008), 447-505 Zbl1154.52005MR2410380
  7. Eugenio Calabi, On compact, Riemannian manifolds with constant curvature. I, Proc. Sympos. Pure Math., Vol. III (1961), 155-180, American Mathematical Society, Providence, R.I. Zbl0129.14102MR133787
  8. Jeff Cheeger, Werner Müller, Robert Schrader, On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984), 405-454 Zbl0559.53028MR734226
  9. Daryl Cooper, Igor Rivin, Combinatorial scalar curvature and rigidity of ball packings, Math. Res. Lett. 3 (1996), 51-60 Zbl0868.51023MR1393382
  10. François Fillastre, Ivan Izmestiev, Hyperbolic cusps with convex polyhedral boundary, Geom. Topol. 13 (2009), 457-492 Zbl1179.57026MR2469522
  11. David Glickenstein, Discrete conformal variations and scalar curvature on piecewise flat two- and three-dimensional manifolds, J. Differential Geom. 87 (2011), 201-237 Zbl1243.52014MR2788656
  12. Ivan Izmestiev, The Colin de Verdière number and graphs of polytopes, Israel J. Math. 178 (2010), 427-444 Zbl1298.05204MR2733076
  13. Ivan Izmestiev, Examples of infinitesimally flexible 3–dimensional hyperbolic cone-manifolds, J. Math. Soc. Japan 63 (2011), 581-598 Zbl1221.57029MR2793111
  14. Ivan Izmestiev, Infinitesimal rigidity of convex polyhedra through the second derivative of the Hilbert-Einstein functional, Canad. J. Math. 66 (2014), 783-825 Zbl1303.52012MR3224265
  15. Ivan Izmestiev, Jean-Marc Schlenker, Infinitesimal rigidity of polyhedra with vertices in convex position, Pacific J. Math. 248 (2010), 171-190 Zbl1200.52014MR2734170
  16. Norihito Koiso, Nondeformability of Einstein metrics, Osaka J. Math. 15 (1978), 419-433 Zbl0392.53030MR504300
  17. Rafe Mazzeo, Grégoire Montcouquiol, Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra, J. Differential Geom. 87 (2011), 525-576 Zbl1234.53014MR2819548
  18. Tullio Regge, General relativity without coordinates, Nuovo Cimento 19 (1961), 558-571 MR127372
  19. Stefan Sechelmann, Alexandrov’s Polyhedron Editor, Java Web Start application 
  20. André Weil, On discrete subgroups of Lie groups, Ann. of Math. (2) 72 (1960), 369-384 Zbl0131.26602MR137792
  21. Hartmut Weiss, The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2 π , Geom. Topol. 17 (2013) Zbl1262.53032MR3035330
  22. Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37 Zbl0096.37201MR125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.