Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes
Alexander I. Bobenko[1]; Ivan Izmestiev[1]
- [1] Technische Universität Berlin Institut für Mathematik Str. des 17. Juni 136 10623 Berlin (Germany)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 447-505
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBobenko, Alexander I., and Izmestiev, Ivan. "Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes." Annales de l’institut Fourier 58.2 (2008): 447-505. <http://eudml.org/doc/10322>.
@article{Bobenko2008,
abstract = {We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.},
affiliation = {Technische Universität Berlin Institut für Mathematik Str. des 17. Juni 136 10623 Berlin (Germany); Technische Universität Berlin Institut für Mathematik Str. des 17. Juni 136 10623 Berlin (Germany)},
author = {Bobenko, Alexander I., Izmestiev, Ivan},
journal = {Annales de l’institut Fourier},
keywords = {Singular Euclidean metric; convex polytope; total scalar curvature; singular euclidean metric; Delaunay triangulation; generalized convex polytope; generalized dual; mixed volumes.},
language = {eng},
number = {2},
pages = {447-505},
publisher = {Association des Annales de l’institut Fourier},
title = {Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes},
url = {http://eudml.org/doc/10322},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Bobenko, Alexander I.
AU - Izmestiev, Ivan
TI - Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 447
EP - 505
AB - We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.
LA - eng
KW - Singular Euclidean metric; convex polytope; total scalar curvature; singular euclidean metric; Delaunay triangulation; generalized convex polytope; generalized dual; mixed volumes.
UR - http://eudml.org/doc/10322
ER -
References
top- A. D. Alexandrov, On the theory of mixed volumes II, Mat. Sbornik 44 (1937), 1205-1238
- A. D. Alexandrov, Existence of a convex polyhedron and of a convex surface with a given metric, Mat. Sbornik, N. Ser. 11(53) (1942), 15-65 Zbl0061.37603MR13540
- A. D. Alexandrov, Convex polyhedra, (2005), Springer-Verlag, Berlin Zbl1067.52011MR2127379
- Franz Aurenhammer, Rolf Klein, Voronoi diagrams, Handbook of computational geometry (2000), 201-290, North-Holland, Amsterdam Zbl0995.65024MR1746678
- W. Blaschke, Ein Beweis für die Unverbiegbarkeit geschlossener konvexer Flächen., Nachr. Ges. Wiss. Göttingen (1912), 607-610 Zbl43.0697.01
- W. Blaschke, G. Herglotz, Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum, Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Abt. No.2 (1937), 229-230 Zbl0018.23501
- A. Bobenko, B. Springborn, A discrete Laplace-Beltrami operator for simplicial surfaces Zbl1144.65011
- Brian H. Bowditch, Singular Euclidean structures on surfaces, J. London Math. Soc. (2) 44 (1991), 553-565 Zbl0748.57003MR1149015
- Max Dehn, Über die Starrheit konvexer Polyeder., Math. Ann. 77 (1916), 466-473 Zbl46.1115.01MR1511873
- Herbert Edelsbrunner, Geometry and topology for mesh generation, 7 (2001), Cambridge University Press, Cambridge Zbl0981.65028MR1833977
- Maksym Fedorchuk, Igor Pak, Rigidity and polynomial invariants of convex polytopes, Duke Math. J. 129 (2005), 371-404 Zbl1081.52012MR2165546
- François Fillastre, Polyhedral realization of hyperbolic metrics with conical singularities on compact surfaces, Ann. Inst. Fourier (Grenoble) 57 (2007), 163-195 Zbl1123.53033MR2313089
- P. Filliman, Rigidity and the Alexandrov-Fenchel inequality., Monatsh. Math. 113 (1992), 1-22 Zbl0765.52017MR1149057
- S. Fortune, Voronoi diagrams and Delaunay triangulations, Handbook of discrete and computational geometry (1997), 377-388, CRC, Boca Raton, FL Zbl0907.68190MR1730176
- I. M. Gelʼfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser Boston Inc., Boston, MA Zbl0827.14036MR1264417
- D. Glickenstein, Geometric triangulations and discrete Laplacians on manifolds Zbl1243.52014
- C. Indermitte, Th. M. Liebling, M. Troyanov, H. Clémençon, Voronoi diagrams on piecewise flat surfaces and an application to biological growth, Theoret. Comput. Sci. 263 (2001), 263-274 Zbl0974.68222MR1846934
- H. Liebmann, Beweis zweier Sätze über die Bestimmung von Ovaloiden durch das Krümmungsmass oder die mittlere Krümmung für jede Normalenrichtung., Nachr. Ges. Wiss. Göttingen (1899), 134-142 Zbl30.0547.02
- J. Milnor, The Schläfli differential equality, Collected papers 1 (1994), Publish or Perish Inc., Houston, TX
- Hermann Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198-219 Zbl28.0427.01
- L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394 Zbl0051.12402MR58265
- Igor Pak, Rigidity and polynomial invariants of convex polytopes, Sib. Math. J. 47 (2006), 859-864 Zbl1150.52311MR2265287
- T Regge, General relativity without coordinates, Nuovo Cimento 19 (1961), 558-571 MR127372
- Igor Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. (2) 139 (1994), 553-580 Zbl0823.52009MR1283870
- Jean-Marc Schlenker, Circle patterns on singular surfaces
- Jean-Marc Schlenker, Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc. 359 (2007), 2155-2189 (electronic) Zbl1126.53041MR2276616
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, 44 (1993), Cambridge University Press, Cambridge Zbl0798.52001MR1216521
- Boris A. Springborn, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra Zbl1181.52018
- Yu. A. Volkov, An estimate for the deformation of a convex surface in dependence on the variation of its intrinsic metric, Ukrain. Geometr. Sb. 5–6 (1968), 44-69 Zbl0207.20801MR283734
- Yu. A. Volkov, E. G. Podgornova, Existence of a convex polyhedron with prescribed development, Taškent. Gos. Ped. Inst. Učen. Zap. 85 (1971), 3-54, 83 MR328776
- H. Weyl, Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement, Zürich. Naturf. Ges. 61 (1916), 40-72 Zbl46.1115.03
- G. Ziegler, Lectures on polytopes, 152 (1995), Springer-Verlag, Berlin Zbl0823.52002MR1311028
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.