[unknown]
Dihua Jiang[1]; Baiying Liu[2]
- [1] School of Mathematics University of Minnesota Minneapolis, MN 55455 (USA)
- [2] Department of Mathematics University of Utah Salt Lake City, UT 84112 (USA)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-43
- ISSN: 0373-0956
Access Full Article
topHow to cite
topJiang, Dihua, and Liu, Baiying. "null." Annales de l’institut Fourier 0.0 (0): 1-43. <http://eudml.org/doc/275412>.
@article{Jiang0,
affiliation = {School of Mathematics University of Minnesota Minneapolis, MN 55455 (USA); Department of Mathematics University of Utah Salt Lake City, UT 84112 (USA)},
author = {Jiang, Dihua, Liu, Baiying},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-43},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275412},
volume = {0},
year = {0},
}
TY - JOUR
AU - Jiang, Dihua
AU - Liu, Baiying
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 43
LA - eng
UR - http://eudml.org/doc/275412
ER -
References
top- Pramod N. Achar, An order-reversing duality map for conjugacy classes in Lusztig’s canonical quotient, Transform. Groups 8 (2003), 107-145 Zbl1021.22003
- James Arthur, The endoscopic classification of representations, 61 (2013), American Mathematical Society, Providence, RI Zbl1297.22023
- Dan Barbasch, The unitary spherical spectrum for split classical groups, J. Inst. Math. Jussieu 9 (2010), 265-356 Zbl1188.22010
- Dan Barbasch, David A. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), 41-110 Zbl0582.22007
- David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008
- Wee Teck Gan, Benedict H. Gross, Dipendra Prasad, Symplectic local root numbers, central critical values, and restriction problems in the representation theory of classical groups, Astérisque (2012), 1-109 Zbl1280.22019
- David Ginzburg, Constructing automorphic representations in split classical groups, Electron. Res. Announc. Math. Sci. 19 (2012), 18-32 Zbl1291.22020
- David Ginzburg, Dihua Jiang, Stephen Rallis, On the nonvanishing of the central value of the Rankin-Selberg -functions, J. Amer. Math. Soc. 17 (2004), 679-722 (electronic) Zbl1057.11029
- David Ginzburg, Dihua Jiang, Stephen Rallis, David Soudry, -functions for symplectic groups using Fourier-Jacobi models, Arithmetic geometry and automorphic forms 19 (2011), 183-207, Int. Press, Somerville, MA Zbl1325.11042
- David Ginzburg, Stephen Rallis, David Soudry, On Fourier coefficients of automorphic forms of symplectic groups, Manuscripta Math. 111 (2003), 1-16 Zbl1027.11034
- David Ginzburg, Stephen Rallis, David Soudry, Construction of CAP representations for symplectic groups using the descent method, Automorphic representations, -functions and applications: progress and prospects 11 (2005), 193-224, de Gruyter, Berlin Zbl1104.11024
- David Ginzburg, Stephen Rallis, David Soudry, The descent map from automorphic representations of to classical groups, (2011), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ Zbl1233.11056
- Dihua Jiang, Automorphic integral transforms for classical groups I: Endoscopy correspondences, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro 614 (2014), 179-242, Amer. Math. Soc., Providence, RI Zbl1315.11037
- Dihua Jiang, Baiying Liu, Fourier coefficients for automorphic forms on quasisplit classical groups Zbl06359741
- Dihua Jiang, Baiying Liu, On Fourier coefficients of automorphic forms of , Int. Math. Res. Not. IMRN (2013), 4029-4071 Zbl06438742
- Dihua Jiang, Baiying Liu, On special unipotent orbits and Fourier coefficients for automorphic forms on symplectic groups, J. Number Theory 146 (2015), 343-389 Zbl06359741
- Dihua Jiang, Baiying Liu, Lei Zhang, Poles of certain residual Eisenstein series of classical groups, Pacific J. Math. 264 (2013), 83-123 Zbl1325.11047
- Dihua Jiang, Lei Zhang, A product of tensor product -functions of quasi-split classical groups of Hermitian type, Geom. Funct. Anal. 24 (2014), 552-609 Zbl1298.11046
- S. Kudla, Note on the local theta correspondence Zbl0583.22010
- Serge Lang, Algebraic number theory, 110 (1994), Springer-Verlag, New York Zbl0811.11001
- Baiying Liu, Fourier Coefficients of Automorphic Forms and Arthur Classification, (2013), ProQuest LLC, Ann Arbor, MI Zbl06438742
- Goran Muić, On the non-unitary unramified dual for classical -adic groups, Trans. Amer. Math. Soc. 358 (2006), 4653-4687 (electronic) Zbl1102.22014
- Goran Muić, On certain classes of unitary representations for split classical groups, Canad. J. Math. 59 (2007), 148-185 Zbl1119.22011
- Goran Muić, Marko Tadić, Unramified unitary duals for split classical -adic groups; the topology and isolated representations, On certain -functions 13 (2011), 375-438, Amer. Math. Soc., Providence, RI Zbl1267.22009
- Monica Nevins, On nilpotent orbits of and over a local non-Archimedean field, Algebr. Represent. Theory 14 (2011), 161-190 Zbl1226.22022
- O. T. O’Meara, Introduction to quadratic forms, (1971), Springer-Verlag, New York-Heidelberg
- I. I. Piatetski-Shapiro, Multiplicity one theorems, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 (1979), 209-212, Amer. Math. Soc., Providence, R.I. Zbl0423.22017
- J. A. Shalika, The multiplicity one theorem for , Ann. of Math. (2) 100 (1974), 171-193 Zbl0316.12010
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque (2001)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.