[unknown]

Dihua Jiang[1]; Baiying Liu[2]

  • [1] School of Mathematics University of Minnesota Minneapolis, MN 55455 (USA)
  • [2] Department of Mathematics University of Utah Salt Lake City, UT 84112 (USA)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-43
  • ISSN: 0373-0956

How to cite

top

Jiang, Dihua, and Liu, Baiying. "null." Annales de l’institut Fourier 0.0 (0): 1-43. <http://eudml.org/doc/275412>.

@article{Jiang0,
affiliation = {School of Mathematics University of Minnesota Minneapolis, MN 55455 (USA); Department of Mathematics University of Utah Salt Lake City, UT 84112 (USA)},
author = {Jiang, Dihua, Liu, Baiying},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-43},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275412},
volume = {0},
year = {0},
}

TY - JOUR
AU - Jiang, Dihua
AU - Liu, Baiying
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 43
LA - eng
UR - http://eudml.org/doc/275412
ER -

References

top
  1. Pramod N. Achar, An order-reversing duality map for conjugacy classes in Lusztig’s canonical quotient, Transform. Groups 8 (2003), 107-145 Zbl1021.22003
  2. James Arthur, The endoscopic classification of representations, 61 (2013), American Mathematical Society, Providence, RI Zbl1297.22023
  3. Dan Barbasch, The unitary spherical spectrum for split classical groups, J. Inst. Math. Jussieu 9 (2010), 265-356 Zbl1188.22010
  4. Dan Barbasch, David A. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), 41-110 Zbl0582.22007
  5. David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008
  6. Wee Teck Gan, Benedict H. Gross, Dipendra Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque (2012), 1-109 Zbl1280.22019
  7. David Ginzburg, Constructing automorphic representations in split classical groups, Electron. Res. Announc. Math. Sci. 19 (2012), 18-32 Zbl1291.22020
  8. David Ginzburg, Dihua Jiang, Stephen Rallis, On the nonvanishing of the central value of the Rankin-Selberg L -functions, J. Amer. Math. Soc. 17 (2004), 679-722 (electronic) Zbl1057.11029
  9. David Ginzburg, Dihua Jiang, Stephen Rallis, David Soudry, L -functions for symplectic groups using Fourier-Jacobi models, Arithmetic geometry and automorphic forms 19 (2011), 183-207, Int. Press, Somerville, MA Zbl1325.11042
  10. David Ginzburg, Stephen Rallis, David Soudry, On Fourier coefficients of automorphic forms of symplectic groups, Manuscripta Math. 111 (2003), 1-16 Zbl1027.11034
  11. David Ginzburg, Stephen Rallis, David Soudry, Construction of CAP representations for symplectic groups using the descent method, Automorphic representations, -functions and applications: progress and prospects 11 (2005), 193-224, de Gruyter, Berlin Zbl1104.11024
  12. David Ginzburg, Stephen Rallis, David Soudry, The descent map from automorphic representations of GL ( n ) to classical groups, (2011), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ Zbl1233.11056
  13. Dihua Jiang, Automorphic integral transforms for classical groups I: Endoscopy correspondences, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro 614 (2014), 179-242, Amer. Math. Soc., Providence, RI Zbl1315.11037
  14. Dihua Jiang, Baiying Liu, Fourier coefficients for automorphic forms on quasisplit classical groups Zbl06359741
  15. Dihua Jiang, Baiying Liu, On Fourier coefficients of automorphic forms of GL ( n ) , Int. Math. Res. Not. IMRN (2013), 4029-4071 Zbl06438742
  16. Dihua Jiang, Baiying Liu, On special unipotent orbits and Fourier coefficients for automorphic forms on symplectic groups, J. Number Theory 146 (2015), 343-389 Zbl06359741
  17. Dihua Jiang, Baiying Liu, Lei Zhang, Poles of certain residual Eisenstein series of classical groups, Pacific J. Math. 264 (2013), 83-123 Zbl1325.11047
  18. Dihua Jiang, Lei Zhang, A product of tensor product L -functions of quasi-split classical groups of Hermitian type, Geom. Funct. Anal. 24 (2014), 552-609 Zbl1298.11046
  19. S. Kudla, Note on the local theta correspondence Zbl0583.22010
  20. Serge Lang, Algebraic number theory, 110 (1994), Springer-Verlag, New York Zbl0811.11001
  21. Baiying Liu, Fourier Coefficients of Automorphic Forms and Arthur Classification, (2013), ProQuest LLC, Ann Arbor, MI Zbl06438742
  22. Goran Muić, On the non-unitary unramified dual for classical p -adic groups, Trans. Amer. Math. Soc. 358 (2006), 4653-4687 (electronic) Zbl1102.22014
  23. Goran Muić, On certain classes of unitary representations for split classical groups, Canad. J. Math. 59 (2007), 148-185 Zbl1119.22011
  24. Goran Muić, Marko Tadić, Unramified unitary duals for split classical p -adic groups; the topology and isolated representations, On certain -functions 13 (2011), 375-438, Amer. Math. Soc., Providence, RI Zbl1267.22009
  25. Monica Nevins, On nilpotent orbits of SL n and Sp 2 n over a local non-Archimedean field, Algebr. Represent. Theory 14 (2011), 161-190 Zbl1226.22022
  26. O. T. O’Meara, Introduction to quadratic forms, (1971), Springer-Verlag, New York-Heidelberg 
  27. I. I. Piatetski-Shapiro, Multiplicity one theorems, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 (1979), 209-212, Amer. Math. Soc., Providence, R.I. Zbl0423.22017
  28. J. A. Shalika, The multiplicity one theorem for GL n , Ann. of Math. (2) 100 (1974), 171-193 Zbl0316.12010
  29. Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque (2001) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.