Some inverse and control problems for fluids

Enrique Fernández-Cara[1]; Thierry Horsin[2]; Henry Kasumba[3]

  • [1] Dpto. EDAN University of Sevilla Aptdo. 1160, 41080 Sevilla SPAIN
  • [2] IMath - Ingénierie Mathématique CNAM, 292, rue Saint Martin - case courrier 2D5000 75141 Paris Cedex 03 FRANCE
  • [3] Radon Institute of Industrial and Applied Mathematics Austrian Academy of Sciences Alternbergstrasse 69 A-4040 Linz AUSTRIA

Annales mathématiques Blaise Pascal (2013)

  • Volume: 20, Issue: 1, page 101-138
  • ISSN: 1259-1734

Abstract

top
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.

How to cite

top

Fernández-Cara, Enrique, Horsin, Thierry, and Kasumba, Henry. "Some inverse and control problems for fluids." Annales mathématiques Blaise Pascal 20.1 (2013): 101-138. <http://eudml.org/doc/275415>.

@article{Fernández2013,
abstract = {This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.},
affiliation = {Dpto. EDAN University of Sevilla Aptdo. 1160, 41080 Sevilla SPAIN; IMath - Ingénierie Mathématique CNAM, 292, rue Saint Martin - case courrier 2D5000 75141 Paris Cedex 03 FRANCE; Radon Institute of Industrial and Applied Mathematics Austrian Academy of Sciences Alternbergstrasse 69 A-4040 Linz AUSTRIA},
author = {Fernández-Cara, Enrique, Horsin, Thierry, Kasumba, Henry},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Navier-Stokes equations; Euler equations; inverse problems; exact and approximate controllability; Lagrangian controllability; vortex reduction; shape optimization; exact controllability; approximate controllability},
language = {eng},
month = {1},
number = {1},
pages = {101-138},
publisher = {Annales mathématiques Blaise Pascal},
title = {Some inverse and control problems for fluids},
url = {http://eudml.org/doc/275415},
volume = {20},
year = {2013},
}

TY - JOUR
AU - Fernández-Cara, Enrique
AU - Horsin, Thierry
AU - Kasumba, Henry
TI - Some inverse and control problems for fluids
JO - Annales mathématiques Blaise Pascal
DA - 2013/1//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 1
SP - 101
EP - 138
AB - This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
LA - eng
KW - Navier-Stokes equations; Euler equations; inverse problems; exact and approximate controllability; Lagrangian controllability; vortex reduction; shape optimization; exact controllability; approximate controllability
UR - http://eudml.org/doc/275415
ER -

References

top
  1. G. Alessandrini, E. Beretta, E. Rosset, S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 755-806 Zbl1034.35148MR1822407
  2. C. Alvarez, C. Conca, L. Friz, O. Kavian, J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems 21 (2005), 1531-1552 Zbl1088.35080MR2173409
  3. S. Andrieux, A. Ben Abda, M. Jaou, On some inverse geometrical problems, Partial differential equation methods in control and shape analysis (Pisa) 188 (1997), 11-27, Dekker, New York Zbl0881.35122MR1452881
  4. K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in linear and non-linear programming, (1958), Stanford University Press, Stanford, Calif. Zbl0091.16002MR108399
  5. M. Badra, F. Caubet, M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci. 21 (2011), 2069-2101 Zbl1239.35182MR2851707
  6. J. A. Bello, E. Fernández-Cara, J. Lemoine, J. Simon, The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow, SIAM J. Control Optim. 35 (1997), 626-640 Zbl0873.76019MR1436642
  7. F. Ben Belgacem, S. M. Kaber, On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree, Inverse Problems 27 (2011) Zbl1217.35208MR2793831
  8. F. Boyer, F. Hubert, J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations, Numer. Math. 118 (2011), 601-661 Zbl1222.93029MR2822494
  9. B. Canuto, O. Kavian, Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal. 32 (2001), 963-986 (electronic) Zbl0981.35096MR1828313
  10. C. Carthel, R. Glowinski, J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach, J. Optim. Theory Appl. 82 (1994), 429-484 Zbl0825.93316MR1290658
  11. A. Bermúdez de Castro, Continuum thermomechanics, 43 (2005), Birkhäuser Verlag, Basel Zbl1070.74001MR2145925
  12. N. Cindea, E. Fernández-Cara, A. Münch, Numerical null controllability of the wave equation through primal method and Carleman estimates, ESAIM: COCV (to appear, 2013) Zbl1292.35162
  13. N. Cindea, E. Fernández-Cara, A. Münch, D. De Souza, On the numerical null controllability of the Stokes and Navier-Stokes systems, In preparation (2013) Zbl1292.35162
  14. C. Conca, E. L. Schwindt, T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems 28 (2012) Zbl1235.76021MR2864506
  15. J.-M. Coron, On the controllability of the 2 -D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 35-75 (electronic) Zbl0872.93040MR1393067
  16. J.-M. Coron, On the controllability of 2 -D incompressible perfect fluids, J. Math. Pures Appl. (9) 75 (1996), 155-188 Zbl0848.76013MR1380673
  17. J.-M. Coron, A. V. Fursikov, Global exact controllability of the 2 D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys. 4 (1996), 429-448 Zbl0938.93030MR1470445
  18. A. Doubova, E. Fernández-Cara, M. González-Burgos, J. H. Ortega, A geometric inverse problem for the Boussinesq system, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 1213-1238 Zbl1116.35116MR2240741
  19. A. Doubova, E. Fernández-Cara, J. H. Ortega, On the identification of a single body immersed in a Navier-Stokes fluid, European J. Appl. Math. 18 (2007), 57-80 Zbl1142.35101MR2335200
  20. S. Ervedoza, J. Valein, On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Complut. 23 (2010), 163-190 Zbl1191.35161MR2578577
  21. L. Euler, General laws of the motion of fluids, Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza (1999), 26-54 Zbl0955.76500MR1754941
  22. C. Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 267-302 (electronic) Zbl0872.93039MR1418484
  23. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (2004), 1501-1542 Zbl1267.93020MR2103189
  24. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Some controllability results for the N -dimensional Navier-Stokes and Boussinesq systems with N - 1 scalar controls, SIAM J. Control Optim. 45 (2006), 146-173 (electronic) Zbl1109.93006MR2225301
  25. E. Fernández-Cara, A. Münch, Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods, Math. Control Relat. Fields 2 (2012), 217-246 Zbl1264.35260MR2991568
  26. E. Fernández-Cara, A. Münch, Strong convergent approximations of null controls for the 1D heat equation, SeMA Journal 61 (2013), 49-78 Zbl1263.35121
  27. A. Fowler, Mathematical geoscience, 36 (2011), Springer, London Zbl1219.86001MR2760029
  28. A. V. Fursikov, Exact controllability and feedback stabilization from a boundary for the Navier-Stokes equations, Control of fluid flow 330 (2006), 173-188, Springer, Berlin Zbl1161.76467MR2243525
  29. A. V. Fursikov, M. Gunzburger, L. S. Hou, S. Manservisi, Optimal control problems for the Navier-Stokes equations, Lectures on applied mathematics (Munich, 1999) (2000), 143-155, Springer, Berlin Zbl0962.49003MR1767769
  30. A. V. Fursikov, O. Yu. Imanuilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk 54 (1999), 93-146 Zbl0970.35116MR1728643
  31. A. V. Fursikov, O. Yu. Imanuvilov, Controllability of evolution equations, 34 (1996), Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul Zbl0862.49004MR1406566
  32. O. Glass, T. Horsin, Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, J. Math. Pures Appl. (9) 93 (2010), 61-90 Zbl1180.35531MR2579376
  33. O. Glass, T. Horsin, Prescribing the Motion of a Set of Particles in a Three-Dimensional Perfect Fluid, SIAM J. Control Optim. 50 (2012), 2726-2742 Zbl1263.76018MR3022084
  34. R. Glowinski, Numerical methods for nonlinear variational problems, (2008), Springer-Verlag, Berlin Zbl1139.65050MR2423313
  35. R. Glowinski, J.-L. Lions, J. He, Exact and approximate controllability for distributed parameter systems, 117 (2008), Cambridge University Press, Cambridge Zbl1142.93002MR2404764
  36. M. González-Burgos, S. Guerrero, J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal. 8 (2009), 311-333 Zbl1152.93005MR2449112
  37. M. D. Gunzburger, Perspectives in flow control and optimization, 5 (2003), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl1088.93001MR1946726
  38. M. Hinze, K. Kunisch, Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim. 40 (2001), 925-946 (electronic) Zbl1012.49026MR1871460
  39. Th. Horsin, Application of the exact null controllability of the heat equation to moving sets, C. R. Math. Acad. Sci. Paris 342 (2006), 849-852 Zbl1138.93013MR2224634
  40. Th. Horsin, Local exact Lagrangian controllability of the Burgers viscous equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 219-230 Zbl1145.35330MR2396520
  41. O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001), 39-72 (electronic) Zbl0961.35104MR1804497
  42. V. Isakov, Inverse problems for partial differential equations, 127 (2006), Springer, New York Zbl1092.35001MR2193218
  43. H. Kasumba, K. Kunisch, On free surface PDE constrained shape optimization problems, Appl. Math. Comput. 218 (2012), 11429-11450 Zbl1278.49051MR2943988
  44. H. Kasumba, K. Kunisch, Vortex control in channel flows using translational invariant cost functionals, Comput. Optim. Appl. 52 (2012), 691-717 Zbl1258.49070MR2950502
  45. T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188-200 Zbl0166.45302MR211057
  46. S. Kindermann, Convergence rates of the Hilbert uniqueness method via Tikhonov regularization, J. Optim. Theory Appl. 103 (1999), 657-673 Zbl0943.65109MR1727248
  47. M. V. Klibanov, A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, (2004), VSP, Utrecht Zbl1069.65106MR2126149
  48. A. B. Krygin, Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Priložen. 5 (1971), 72-76 Zbl0236.57016MR368067
  49. K. Kunisch, B. Vexler, Optimal vortex reduction for instationary flows based on translation invariant cost functionals, SIAM J. Control Optim. 46 (2007), 1368-1397 Zbl1159.35398MR2346385
  50. S. Labbé, E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett. 55 (2006), 597-609 Zbl1129.93324MR2225370
  51. J. L. Lagrange, Oeuvres. Tome 14, (1967–1892), Gauthier-Villars (Paris), Hildesheim 
  52. S. Micu, E. Zuazua, Regularity issues for the null-controllability of the linear 1-d heat equation, Systems Control Lett. 60 (2011), 406-413 Zbl1225.93027MR2841484
  53. A. Münch, E. Zuazua, Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Problems 26 (2010) Zbl1203.35015MR2661697
  54. A. A. Samarskii, P. N. Vabishchevich, Numerical methods for solving inverse problems of mathematical physics, (2007), Walter de Gruyter GmbH & Co. KG, Berlin Zbl1136.65105MR2381619
  55. J. San Martín, T. Takahashi, M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms, Quart. Appl. Math. 65 (2007), 405-424 Zbl1135.76058MR2354880
  56. W. Yan, Y. He, Y. Ma, Shape reconstruction of an inverse boundary value problem of two-dimensional Navier-Stokes equations, Internat. J. Numer. Methods Fluids 62 (2010), 632-646 Zbl05668336MR2605011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.