Some inverse and control problems for fluids
Enrique Fernández-Cara[1]; Thierry Horsin[2]; Henry Kasumba[3]
- [1] Dpto. EDAN University of Sevilla Aptdo. 1160, 41080 Sevilla SPAIN
- [2] IMath - Ingénierie Mathématique CNAM, 292, rue Saint Martin - case courrier 2D5000 75141 Paris Cedex 03 FRANCE
- [3] Radon Institute of Industrial and Applied Mathematics Austrian Academy of Sciences Alternbergstrasse 69 A-4040 Linz AUSTRIA
Annales mathématiques Blaise Pascal (2013)
- Volume: 20, Issue: 1, page 101-138
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topFernández-Cara, Enrique, Horsin, Thierry, and Kasumba, Henry. "Some inverse and control problems for fluids." Annales mathématiques Blaise Pascal 20.1 (2013): 101-138. <http://eudml.org/doc/275415>.
@article{Fernández2013,
abstract = {This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.},
affiliation = {Dpto. EDAN University of Sevilla Aptdo. 1160, 41080 Sevilla SPAIN; IMath - Ingénierie Mathématique CNAM, 292, rue Saint Martin - case courrier 2D5000 75141 Paris Cedex 03 FRANCE; Radon Institute of Industrial and Applied Mathematics Austrian Academy of Sciences Alternbergstrasse 69 A-4040 Linz AUSTRIA},
author = {Fernández-Cara, Enrique, Horsin, Thierry, Kasumba, Henry},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Navier-Stokes equations; Euler equations; inverse problems; exact and approximate controllability; Lagrangian controllability; vortex reduction; shape optimization; exact controllability; approximate controllability},
language = {eng},
month = {1},
number = {1},
pages = {101-138},
publisher = {Annales mathématiques Blaise Pascal},
title = {Some inverse and control problems for fluids},
url = {http://eudml.org/doc/275415},
volume = {20},
year = {2013},
}
TY - JOUR
AU - Fernández-Cara, Enrique
AU - Horsin, Thierry
AU - Kasumba, Henry
TI - Some inverse and control problems for fluids
JO - Annales mathématiques Blaise Pascal
DA - 2013/1//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 1
SP - 101
EP - 138
AB - This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
LA - eng
KW - Navier-Stokes equations; Euler equations; inverse problems; exact and approximate controllability; Lagrangian controllability; vortex reduction; shape optimization; exact controllability; approximate controllability
UR - http://eudml.org/doc/275415
ER -
References
top- G. Alessandrini, E. Beretta, E. Rosset, S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 755-806 Zbl1034.35148MR1822407
- C. Alvarez, C. Conca, L. Friz, O. Kavian, J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems 21 (2005), 1531-1552 Zbl1088.35080MR2173409
- S. Andrieux, A. Ben Abda, M. Jaou, On some inverse geometrical problems, Partial differential equation methods in control and shape analysis (Pisa) 188 (1997), 11-27, Dekker, New York Zbl0881.35122MR1452881
- K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in linear and non-linear programming, (1958), Stanford University Press, Stanford, Calif. Zbl0091.16002MR108399
- M. Badra, F. Caubet, M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci. 21 (2011), 2069-2101 Zbl1239.35182MR2851707
- J. A. Bello, E. Fernández-Cara, J. Lemoine, J. Simon, The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow, SIAM J. Control Optim. 35 (1997), 626-640 Zbl0873.76019MR1436642
- F. Ben Belgacem, S. M. Kaber, On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree, Inverse Problems 27 (2011) Zbl1217.35208MR2793831
- F. Boyer, F. Hubert, J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations, Numer. Math. 118 (2011), 601-661 Zbl1222.93029MR2822494
- B. Canuto, O. Kavian, Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal. 32 (2001), 963-986 (electronic) Zbl0981.35096MR1828313
- C. Carthel, R. Glowinski, J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach, J. Optim. Theory Appl. 82 (1994), 429-484 Zbl0825.93316MR1290658
- A. Bermúdez de Castro, Continuum thermomechanics, 43 (2005), Birkhäuser Verlag, Basel Zbl1070.74001MR2145925
- N. Cindea, E. Fernández-Cara, A. Münch, Numerical null controllability of the wave equation through primal method and Carleman estimates, ESAIM: COCV (to appear, 2013) Zbl1292.35162
- N. Cindea, E. Fernández-Cara, A. Münch, D. De Souza, On the numerical null controllability of the Stokes and Navier-Stokes systems, In preparation (2013) Zbl1292.35162
- C. Conca, E. L. Schwindt, T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems 28 (2012) Zbl1235.76021MR2864506
- J.-M. Coron, On the controllability of the -D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 35-75 (electronic) Zbl0872.93040MR1393067
- J.-M. Coron, On the controllability of -D incompressible perfect fluids, J. Math. Pures Appl. (9) 75 (1996), 155-188 Zbl0848.76013MR1380673
- J.-M. Coron, A. V. Fursikov, Global exact controllability of the D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys. 4 (1996), 429-448 Zbl0938.93030MR1470445
- A. Doubova, E. Fernández-Cara, M. González-Burgos, J. H. Ortega, A geometric inverse problem for the Boussinesq system, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 1213-1238 Zbl1116.35116MR2240741
- A. Doubova, E. Fernández-Cara, J. H. Ortega, On the identification of a single body immersed in a Navier-Stokes fluid, European J. Appl. Math. 18 (2007), 57-80 Zbl1142.35101MR2335200
- S. Ervedoza, J. Valein, On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Complut. 23 (2010), 163-190 Zbl1191.35161MR2578577
- L. Euler, General laws of the motion of fluids, Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza (1999), 26-54 Zbl0955.76500MR1754941
- C. Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 267-302 (electronic) Zbl0872.93039MR1418484
- E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (2004), 1501-1542 Zbl1267.93020MR2103189
- E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Some controllability results for the -dimensional Navier-Stokes and Boussinesq systems with scalar controls, SIAM J. Control Optim. 45 (2006), 146-173 (electronic) Zbl1109.93006MR2225301
- E. Fernández-Cara, A. Münch, Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods, Math. Control Relat. Fields 2 (2012), 217-246 Zbl1264.35260MR2991568
- E. Fernández-Cara, A. Münch, Strong convergent approximations of null controls for the 1D heat equation, SeMA Journal 61 (2013), 49-78 Zbl1263.35121
- A. Fowler, Mathematical geoscience, 36 (2011), Springer, London Zbl1219.86001MR2760029
- A. V. Fursikov, Exact controllability and feedback stabilization from a boundary for the Navier-Stokes equations, Control of fluid flow 330 (2006), 173-188, Springer, Berlin Zbl1161.76467MR2243525
- A. V. Fursikov, M. Gunzburger, L. S. Hou, S. Manservisi, Optimal control problems for the Navier-Stokes equations, Lectures on applied mathematics (Munich, 1999) (2000), 143-155, Springer, Berlin Zbl0962.49003MR1767769
- A. V. Fursikov, O. Yu. Imanuilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk 54 (1999), 93-146 Zbl0970.35116MR1728643
- A. V. Fursikov, O. Yu. Imanuvilov, Controllability of evolution equations, 34 (1996), Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul Zbl0862.49004MR1406566
- O. Glass, T. Horsin, Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, J. Math. Pures Appl. (9) 93 (2010), 61-90 Zbl1180.35531MR2579376
- O. Glass, T. Horsin, Prescribing the Motion of a Set of Particles in a Three-Dimensional Perfect Fluid, SIAM J. Control Optim. 50 (2012), 2726-2742 Zbl1263.76018MR3022084
- R. Glowinski, Numerical methods for nonlinear variational problems, (2008), Springer-Verlag, Berlin Zbl1139.65050MR2423313
- R. Glowinski, J.-L. Lions, J. He, Exact and approximate controllability for distributed parameter systems, 117 (2008), Cambridge University Press, Cambridge Zbl1142.93002MR2404764
- M. González-Burgos, S. Guerrero, J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal. 8 (2009), 311-333 Zbl1152.93005MR2449112
- M. D. Gunzburger, Perspectives in flow control and optimization, 5 (2003), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl1088.93001MR1946726
- M. Hinze, K. Kunisch, Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim. 40 (2001), 925-946 (electronic) Zbl1012.49026MR1871460
- Th. Horsin, Application of the exact null controllability of the heat equation to moving sets, C. R. Math. Acad. Sci. Paris 342 (2006), 849-852 Zbl1138.93013MR2224634
- Th. Horsin, Local exact Lagrangian controllability of the Burgers viscous equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 219-230 Zbl1145.35330MR2396520
- O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001), 39-72 (electronic) Zbl0961.35104MR1804497
- V. Isakov, Inverse problems for partial differential equations, 127 (2006), Springer, New York Zbl1092.35001MR2193218
- H. Kasumba, K. Kunisch, On free surface PDE constrained shape optimization problems, Appl. Math. Comput. 218 (2012), 11429-11450 Zbl1278.49051MR2943988
- H. Kasumba, K. Kunisch, Vortex control in channel flows using translational invariant cost functionals, Comput. Optim. Appl. 52 (2012), 691-717 Zbl1258.49070MR2950502
- T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188-200 Zbl0166.45302MR211057
- S. Kindermann, Convergence rates of the Hilbert uniqueness method via Tikhonov regularization, J. Optim. Theory Appl. 103 (1999), 657-673 Zbl0943.65109MR1727248
- M. V. Klibanov, A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, (2004), VSP, Utrecht Zbl1069.65106MR2126149
- A. B. Krygin, Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Priložen. 5 (1971), 72-76 Zbl0236.57016MR368067
- K. Kunisch, B. Vexler, Optimal vortex reduction for instationary flows based on translation invariant cost functionals, SIAM J. Control Optim. 46 (2007), 1368-1397 Zbl1159.35398MR2346385
- S. Labbé, E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett. 55 (2006), 597-609 Zbl1129.93324MR2225370
- J. L. Lagrange, Oeuvres. Tome 14, (1967–1892), Gauthier-Villars (Paris), Hildesheim
- S. Micu, E. Zuazua, Regularity issues for the null-controllability of the linear 1-d heat equation, Systems Control Lett. 60 (2011), 406-413 Zbl1225.93027MR2841484
- A. Münch, E. Zuazua, Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Problems 26 (2010) Zbl1203.35015MR2661697
- A. A. Samarskii, P. N. Vabishchevich, Numerical methods for solving inverse problems of mathematical physics, (2007), Walter de Gruyter GmbH & Co. KG, Berlin Zbl1136.65105MR2381619
- J. San Martín, T. Takahashi, M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms, Quart. Appl. Math. 65 (2007), 405-424 Zbl1135.76058MR2354880
- W. Yan, Y. He, Y. Ma, Shape reconstruction of an inverse boundary value problem of two-dimensional Navier-Stokes equations, Internat. J. Numer. Methods Fluids 62 (2010), 632-646 Zbl05668336MR2605011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.