Density of smooth maps for fractional Sobolev spaces into simply connected manifolds when
Pierre Bousquet[1]; Augusto C. Ponce[2]; Jean Van Schaftingen[2]
- [1] Aix-Marseille Université, Laboratoire d’analyse, topologie, probabilités UMR7353, CMI 39, Rue Frédéric Joliot Curie, 13453 Marseille Cedex 13, France
- [2] Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium
Confluentes Mathematici (2013)
- Volume: 5, Issue: 2, page 3-22
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topBousquet, Pierre, Ponce, Augusto C., and Van Schaftingen, Jean. "Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$." Confluentes Mathematici 5.2 (2013): 3-22. <http://eudml.org/doc/275426>.
@article{Bousquet2013,
abstract = {Given a compact manifold $N^n \subset \{\mathbb\{R\}\}^\nu $ and real numbers $s \ge 1$ and $1 \le p < \infty $, we prove that the class $C^\infty (\overline\{Q\}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^\{s, p\}(Q^m; N^n)$ when $N^n$ is $\lfloor sp\rfloor $ simply connected. For $sp$ integer, we prove weak sequential density of $C^\infty (\overline\{Q\}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of $\{\mathbb\{R\}\}^\nu $ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^\{s, p\} \cap W^\{1, sp\}$.},
affiliation = {Aix-Marseille Université, Laboratoire d’analyse, topologie, probabilités UMR7353, CMI 39, Rue Frédéric Joliot Curie, 13453 Marseille Cedex 13, France; Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium; Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium},
author = {Bousquet, Pierre, Ponce, Augusto C., Van Schaftingen, Jean},
journal = {Confluentes Mathematici},
keywords = {Strong density; weak sequential density; Sobolev maps; fractional Sobolev spaces; simply connectedness; strong density},
language = {eng},
number = {2},
pages = {3-22},
publisher = {Institut Camille Jordan},
title = {Density of smooth maps for fractional Sobolev spaces $W^\{s, p\}$ into $\ell $ simply connected manifolds when $s \ge 1$},
url = {http://eudml.org/doc/275426},
volume = {5},
year = {2013},
}
TY - JOUR
AU - Bousquet, Pierre
AU - Ponce, Augusto C.
AU - Van Schaftingen, Jean
TI - Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 2
SP - 3
EP - 22
AB - Given a compact manifold $N^n \subset {\mathbb{R}}^\nu $ and real numbers $s \ge 1$ and $1 \le p < \infty $, we prove that the class $C^\infty (\overline{Q}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^{s, p}(Q^m; N^n)$ when $N^n$ is $\lfloor sp\rfloor $ simply connected. For $sp$ integer, we prove weak sequential density of $C^\infty (\overline{Q}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of ${\mathbb{R}}^\nu $ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^{s, p} \cap W^{1, sp}$.
LA - eng
KW - Strong density; weak sequential density; Sobolev maps; fractional Sobolev spaces; simply connectedness; strong density
UR - http://eudml.org/doc/275426
ER -
References
top- Robert A. Adams, Sobolev spaces, Academic Press, New York-London Zbl0314.46030MR450957
- Fabrice Bethuel, A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 269-286 Zbl0708.58004MR1067776
- Fabrice Bethuel, Approximations in trace spaces defined between manifolds, Nonlinear Anal. 24, 121-130 Zbl0824.58011MR1308474
- Fabrice Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167, 153-206 Zbl0756.46017MR1120602
- Haïm Brezis, Petru Mironescu
- Haïm Brezis, Petru Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1, 387-404 Zbl1023.46031MR1877265
- Haïm Brezis, Louis Nirenberg, Degree theory and BMO, Part I : compact manifolds without boundaries, Selecta Math., 197-263 Zbl0852.58010MR1354598
- Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen, Strong density for higher order Sobolev spaces into compact manifolds Zbl1318.58006
- Fabrice Bethuel, Xiao Min Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80, 60-75 Zbl0657.46027MR960223
- Miguel Escobedo, Some remarks on the density of regular mappings in Sobolev classes of -valued functions, Rev. Mat. Univ. Complut. Madrid 1, 127-144 Zbl0678.46028MR977045
- Herbert Federer, Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72, 458-520 Zbl0187.31301MR123260
- Emilio Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili, Rend. Sem. Mat. Univ. Padova 27, 284-305 Zbl0087.10902MR102739
- Emilio Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 8, 24-51 Zbl0199.44701MR109295
- Andreas Gastel, Andreas J. Nerf, Density of smooth maps in for a close to critical domain dimension, Ann. Global Anal. Geom. 39, 107-129 Zbl1207.58012MR2748341
- Piotr Hajłasz, Approximation of Sobolev mappings, Nonlinear Anal. 22, 1579-1591 Zbl0820.46028MR1285094
- Fengbo Hang, Density problems for , Comm. Pure Appl. Math. 55, 937-947 Zbl1020.58010MR1894159
- Lars Inge Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505-510 Zbl0283.26003MR312232
- Robert Hardt, David Kinderlehrer, Fang-Hua Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 297-322 Zbl0657.49018
- Fengbo Hang, Fanghua Lin, Topology of Sobolev mappings. II, Acta Math. 191, 55-107 Zbl1061.46032MR2020419
- Fengbo Hang, Fanghua Lin, Topology of Sobolev mappings. III, Comm. Pure Appl. Math. 56, 1383-1415 Zbl1038.46026MR1988894
- Vladimir Mazʼya, Sobolev spaces with applications to elliptic partial differential equations, 342, Springer Zbl1217.46002MR2777530
- Petru Mironescu, Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in nonlinear partial differential equations 446, 413-436, Amer. Math. Soc. Zbl1201.46032MR2376670
- Vladimir Mazʼya, Tatyana Shaposhnikova, An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ. 2, 113-125 Zbl1006.46024MR1890884
- Domenico Mucci, Strong density results in trace spaces of maps between manifolds, Manuscripta Math. 128, 421-441 Zbl1171.58002MR2487434
- Louis Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13, 115-162 Zbl0088.07601MR109940
- Frédérique Oru, Rôle des oscillations dans quelques problèmes d’analyse non linéaire
- Mohammad Reza Pakzad, Weak density of smooth maps in for non-abelian , Ann. Global Anal. Geom. 23, 1-12 Zbl1040.58002MR1952855
- Mohammad Reza Pakzad, Tristan Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13, 223-257 Zbl1028.58008
- Tristan Rivière, Dense subsets of , Ann. Global Anal. Geom. 18, 517-528 Zbl0960.35022MR1790711
- Thomas Runst, Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, 3, Walter de Gruyter & Co. Zbl0873.35001MR1419319
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press Zbl0207.13501MR290095
- Richard Schoen, Karen Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18, 253-268 Zbl0547.58020MR710054
- Brian White, Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23, 127-142 Zbl0588.58017MR845702
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.