Density of smooth maps for fractional Sobolev spaces W s , p into simply connected manifolds when s 1

Pierre Bousquet[1]; Augusto C. Ponce[2]; Jean Van Schaftingen[2]

  • [1] Aix-Marseille Université, Laboratoire d’analyse, topologie, probabilités UMR7353, CMI 39, Rue Frédéric Joliot Curie, 13453 Marseille Cedex 13, France
  • [2] Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium

Confluentes Mathematici (2013)

  • Volume: 5, Issue: 2, page 3-22
  • ISSN: 1793-7434

Abstract

top
Given a compact manifold N n ν and real numbers s 1 and 1 p < , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is strongly dense in the fractional Sobolev space W s , p ( Q m ; N n ) when N n is s p simply connected. For s p integer, we prove weak sequential density of C ( Q ¯ m ; N n ) when N n is s p - 1 simply connected. The proofs are based on the existence of a retraction of ν onto N n except for a small subset of N n and on a pointwise estimate of fractional derivatives of composition of maps in W s , p W 1 , s p .

How to cite

top

Bousquet, Pierre, Ponce, Augusto C., and Van Schaftingen, Jean. "Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$." Confluentes Mathematici 5.2 (2013): 3-22. <http://eudml.org/doc/275426>.

@article{Bousquet2013,
abstract = {Given a compact manifold $N^n \subset \{\mathbb\{R\}\}^\nu $ and real numbers $s \ge 1$ and $1 \le p &lt; \infty $, we prove that the class $C^\infty (\overline\{Q\}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^\{s, p\}(Q^m; N^n)$ when $N^n$ is $\lfloor sp\rfloor $ simply connected. For $sp$ integer, we prove weak sequential density of $C^\infty (\overline\{Q\}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of $\{\mathbb\{R\}\}^\nu $ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^\{s, p\} \cap W^\{1, sp\}$.},
affiliation = {Aix-Marseille Université, Laboratoire d’analyse, topologie, probabilités UMR7353, CMI 39, Rue Frédéric Joliot Curie, 13453 Marseille Cedex 13, France; Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium; Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium},
author = {Bousquet, Pierre, Ponce, Augusto C., Van Schaftingen, Jean},
journal = {Confluentes Mathematici},
keywords = {Strong density; weak sequential density; Sobolev maps; fractional Sobolev spaces; simply connectedness; strong density},
language = {eng},
number = {2},
pages = {3-22},
publisher = {Institut Camille Jordan},
title = {Density of smooth maps for fractional Sobolev spaces $W^\{s, p\}$ into $\ell $ simply connected manifolds when $s \ge 1$},
url = {http://eudml.org/doc/275426},
volume = {5},
year = {2013},
}

TY - JOUR
AU - Bousquet, Pierre
AU - Ponce, Augusto C.
AU - Van Schaftingen, Jean
TI - Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 2
SP - 3
EP - 22
AB - Given a compact manifold $N^n \subset {\mathbb{R}}^\nu $ and real numbers $s \ge 1$ and $1 \le p &lt; \infty $, we prove that the class $C^\infty (\overline{Q}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^{s, p}(Q^m; N^n)$ when $N^n$ is $\lfloor sp\rfloor $ simply connected. For $sp$ integer, we prove weak sequential density of $C^\infty (\overline{Q}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of ${\mathbb{R}}^\nu $ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^{s, p} \cap W^{1, sp}$.
LA - eng
KW - Strong density; weak sequential density; Sobolev maps; fractional Sobolev spaces; simply connectedness; strong density
UR - http://eudml.org/doc/275426
ER -

References

top
  1. Robert A. Adams, Sobolev spaces, Academic Press, New York-London Zbl0314.46030MR450957
  2. Fabrice Bethuel, A characterization of maps in H 1 ( B 3 , S 2 ) which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 269-286 Zbl0708.58004MR1067776
  3. Fabrice Bethuel, Approximations in trace spaces defined between manifolds, Nonlinear Anal. 24, 121-130 Zbl0824.58011MR1308474
  4. Fabrice Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167, 153-206 Zbl0756.46017MR1120602
  5. Haïm Brezis, Petru Mironescu 
  6. Haïm Brezis, Petru Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1, 387-404 Zbl1023.46031MR1877265
  7. Haïm Brezis, Louis Nirenberg, Degree theory and BMO, Part I : compact manifolds without boundaries, Selecta Math., 197-263 Zbl0852.58010MR1354598
  8. Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen, Strong density for higher order Sobolev spaces into compact manifolds Zbl1318.58006
  9. Fabrice Bethuel, Xiao Min Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80, 60-75 Zbl0657.46027MR960223
  10. Miguel Escobedo, Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions, Rev. Mat. Univ. Complut. Madrid 1, 127-144 Zbl0678.46028MR977045
  11. Herbert Federer, Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72, 458-520 Zbl0187.31301MR123260
  12. Emilio Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27, 284-305 Zbl0087.10902MR102739
  13. Emilio Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 8, 24-51 Zbl0199.44701MR109295
  14. Andreas Gastel, Andreas J. Nerf, Density of smooth maps in W k , p ( M , N ) for a close to critical domain dimension, Ann. Global Anal. Geom. 39, 107-129 Zbl1207.58012MR2748341
  15. Piotr Hajłasz, Approximation of Sobolev mappings, Nonlinear Anal. 22, 1579-1591 Zbl0820.46028MR1285094
  16. Fengbo Hang, Density problems for W 1 , 1 ( M , N ) , Comm. Pure Appl. Math. 55, 937-947 Zbl1020.58010MR1894159
  17. Lars Inge Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505-510 Zbl0283.26003MR312232
  18. Robert Hardt, David Kinderlehrer, Fang-Hua Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 297-322 Zbl0657.49018
  19. Fengbo Hang, Fanghua Lin, Topology of Sobolev mappings. II, Acta Math. 191, 55-107 Zbl1061.46032MR2020419
  20. Fengbo Hang, Fanghua Lin, Topology of Sobolev mappings. III, Comm. Pure Appl. Math. 56, 1383-1415 Zbl1038.46026MR1988894
  21. Vladimir Mazʼya, Sobolev spaces with applications to elliptic partial differential equations, 342, Springer Zbl1217.46002MR2777530
  22. Petru Mironescu, Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in nonlinear partial differential equations 446, 413-436, Amer. Math. Soc. Zbl1201.46032MR2376670
  23. Vladimir Mazʼya, Tatyana Shaposhnikova, An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ. 2, 113-125 Zbl1006.46024MR1890884
  24. Domenico Mucci, Strong density results in trace spaces of maps between manifolds, Manuscripta Math. 128, 421-441 Zbl1171.58002MR2487434
  25. Louis Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13, 115-162 Zbl0088.07601MR109940
  26. Frédérique Oru, Rôle des oscillations dans quelques problèmes d’analyse non linéaire 
  27. Mohammad Reza Pakzad, Weak density of smooth maps in W 1 , 1 ( M , N ) for non-abelian π 1 ( N ) , Ann. Global Anal. Geom. 23, 1-12 Zbl1040.58002MR1952855
  28. Mohammad Reza Pakzad, Tristan Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13, 223-257 Zbl1028.58008
  29. Tristan Rivière, Dense subsets of H 1 / 2 ( S 2 , S 1 ) , Ann. Global Anal. Geom. 18, 517-528 Zbl0960.35022MR1790711
  30. Thomas Runst, Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, 3, Walter de Gruyter & Co. Zbl0873.35001MR1419319
  31. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press Zbl0207.13501MR290095
  32. Richard Schoen, Karen Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18, 253-268 Zbl0547.58020MR710054
  33. Brian White, Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23, 127-142 Zbl0588.58017MR845702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.