On the multiplicity of eigenvalues of conformally covariant operators
- [1] Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. West, Montréal QC H3A 2K6, Canada.
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 947-970
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCanzani, Yaiza. "On the multiplicity of eigenvalues of conformally covariant operators." Annales de l’institut Fourier 64.3 (2014): 947-970. <http://eudml.org/doc/275432>.
@article{Canzani2014,
abstract = {Let $(M,g)$ be a compact Riemannian manifold and $P_g$ an elliptic, formally self-adjoint, conformally covariant operator of order $m$ acting on smooth sections of a bundle over $M$. We prove that if $P_g$ has no rigid eigenspaces (see Definition 2.2), the set of functions $f\in C^\infty (M, \mathbb\{R\})$ for which $P_\{e^fg\}$ has only simple non-zero eigenvalues is a residual set in $C^\infty (M,\mathbb\{R\})$. As a consequence we prove that if $P_g$ has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the $C^\infty $-topology. We also prove that the eigenvalues of $P_g$ depend continuously on $g$ in the $C^\infty $-topology, provided $P_g$ is strongly elliptic. As an application of our work, we show that if $P_g$ acts on $C^\infty (M)$ (e.g. GJMS operators), its non-zero eigenvalues are generically simple.},
affiliation = {Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. West, Montréal QC H3A 2K6, Canada.},
author = {Canzani, Yaiza},
journal = {Annales de l’institut Fourier},
keywords = {Multiplicity; eigenvalues; conformal geometry; conformally covariant operators; GJMS operators; rigid eigenspace},
language = {eng},
number = {3},
pages = {947-970},
publisher = {Association des Annales de l’institut Fourier},
title = {On the multiplicity of eigenvalues of conformally covariant operators},
url = {http://eudml.org/doc/275432},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Canzani, Yaiza
TI - On the multiplicity of eigenvalues of conformally covariant operators
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 947
EP - 970
AB - Let $(M,g)$ be a compact Riemannian manifold and $P_g$ an elliptic, formally self-adjoint, conformally covariant operator of order $m$ acting on smooth sections of a bundle over $M$. We prove that if $P_g$ has no rigid eigenspaces (see Definition 2.2), the set of functions $f\in C^\infty (M, \mathbb{R})$ for which $P_{e^fg}$ has only simple non-zero eigenvalues is a residual set in $C^\infty (M,\mathbb{R})$. As a consequence we prove that if $P_g$ has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the $C^\infty $-topology. We also prove that the eigenvalues of $P_g$ depend continuously on $g$ in the $C^\infty $-topology, provided $P_g$ is strongly elliptic. As an application of our work, we show that if $P_g$ acts on $C^\infty (M)$ (e.g. GJMS operators), its non-zero eigenvalues are generically simple.
LA - eng
KW - Multiplicity; eigenvalues; conformal geometry; conformally covariant operators; GJMS operators; rigid eigenspace
UR - http://eudml.org/doc/275432
ER -
References
top- B. Ammann, P. Jammes, The supremum of conformally covariant eigenvalues in a conformal class, Variational Problems in Differential Geometry 394 (2011), 1-23, Cambridge Zbl1243.53070
- S. Bando, H. Urakawa, Generic properties of the eigenvalue of the laplacian for compact riemannian manifolds, Tohoku Mathematical Journal 35 (1983), 155-172 MR699924
- R. Baston, Verma modules and differential conformal invariants, Differential Geometry 32 (1990), 851-898 Zbl0732.53011MR1078164
- H. Bateman, The transformation of the electrodynamical equations, Proceedings of the London Mathematical Society 2 (1910), 223-264 Zbl41.0942.03MR1577429
- D. Bleecker, L. Wilson, Splitting the spectrum of a riemannian manifold, SIAM Journal on Mathematical Analysis 11 (1980) Zbl0449.58021MR586909
- T. Branson, Conformally convariant equations on differential forms, Communications in Partial Differential Equations 7 (1982), 393-431 Zbl0532.53021MR652815
- T. Branson, Differential operators canonically associated to a conformal structure, Mathematica scandinavica 57 (1985), 293-345 Zbl0596.53009MR832360
- T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Transactions of the American Mathematical Society 347 (1995), 3671-3742 Zbl0848.58047MR1316845
- T. Branson, S. Chang, P. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Communications in Mathematical Physics 149 (1992), 241-262 Zbl0761.58053MR1186028
- T. Branson, A. Gover, Conformally invariant operators, differential forms, cohomology and a generalisation of q-curvature, Communications in Partial Differential Equations 30 (2005), 1611-1669 Zbl1226.58011MR2182307
- T. Branson, O. Hijazi, Bochner-weitzenböck formulas associated with the rarita-schwinger operator, International Journal of Mathematics 13 (2002), 137-182 Zbl1109.53306MR1891206
- T. Branson, B. Ørsted, Conformal indices of riemannian manifolds, Compositio mathematica 60 (1986), 261-293 Zbl0608.58039MR869104
- T. Branson, B. Ørsted, Generalized gradients and asymptotics of the functional trace, (1988), Odense Universitet, Institut for Mathematik og Datalogi Zbl0662.53038
- T. Branson, B. Ørsted, Conformal geometry and global invariants, Differential Geometry and its Applications 1 (1991), 279-308 Zbl0785.53025MR1244447
- T. Branson, B. Ørsted, Explicit functional determinants in four dimensions, Proceedings of the American Mathematical Society (1991), 669-682 Zbl0762.47019MR1050018
- M. Dahl, Dirac eigenvalues for generic metrics on three-manifolds, Annals of Global Analysis and Geometry 24 (2003), 95-100 Zbl1035.53065MR1990087
- M. Eastwood, Notes on conformal differential geometry, Supplemento ai Rendiconti del Circolo Matematico di Palermo 43 (1996), 57-76 Zbl0911.53020MR1463509
- A. Enciso, D. Peralta-Salas, Nondegeneracy of the eigenvalues of the hodge laplacian for generic metrics on 3-manifolds, Transactions of the American Mathematical Society 364 (2012), 4207-4224 Zbl1286.58021MR2912451
- N. Ginoux, The dirac spectrum, 1976 (2009), Springer Verlag Zbl1186.58020MR2509837
- A. Gover, Conformally invariant operators of standard type, The Quarterly Journal of Mathematics 40 (1989) Zbl0683.53063MR997647
- A. Gover, Conformal de rham hodge theory and operators generalising the q-curvature, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 75 (2005), 109-137 Zbl1104.53033MR2152358
- C. Graham, R. Jenne, L. Mason, G. Sparling, Conformally invariant powers of the laplacian, i: Existence, Journal of the London Mathematical Society 2 (1992) Zbl0726.53010MR1190438
- C. Graham, M. Zworski, Scattering matrix in conformal geometry, Inventiones Mathematicae 152 (2003), 89-118 Zbl1030.58022MR1965361
- N. Hitchin, Harmonic spinors, Advances in Mathematics 14 (1974) Zbl0284.58016MR358873
- Uhlenbeckn K., Generic properties of eigenfunctions, American Journal of Mathematics 98 (1976), 1059-1078 Zbl0355.58017MR464332
- K. Kodaira, Complex Manifolds and Deformation of Complex Structures, 283 (1986), Springer Zbl0581.32012MR815922
- K. Kodaira, D. Spencer, On deformations of complex analytic structures, iii. stability theorems for complex structures, The Annals of Mathematics 71 (1960), 43-76 Zbl0128.16902MR115189
- H. Lawson, M. Michelsohn, Spin geometry, 38 (1989), Princeton University Press Zbl0688.57001MR1031992
- S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds, (1983) Zbl1145.53053
- F. Rellich, Perturbation theory of eigenvalue problems, (1969), Routledge Zbl0181.42002MR240668
- M. Teytel, How rare are multiple eigenvalues?, Communications on pure and applied mathematics 52 (1999), 917-934 Zbl0942.47012MR1686977
- K. Wojciechowski, B. Booss, Analysis, geometry and topology of elliptic operators, (2006), World Scientific Pub Co Inc MR2254829
- V. Wünsch, On conformally invariant differential operators, Mathematische Nachrichten 129 (1986), 269-281 Zbl0619.53008MR864639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.