On the multiplicity of eigenvalues of conformally covariant operators

Yaiza Canzani[1]

  • [1] Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. West, Montréal QC H3A 2K6, Canada.

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 947-970
  • ISSN: 0373-0956

Abstract

top
Let ( M , g ) be a compact Riemannian manifold and P g an elliptic, formally self-adjoint, conformally covariant operator of order m acting on smooth sections of a bundle over M . We prove that if P g has no rigid eigenspaces (see Definition 2.2), the set of functions f C ( M , ) for which P e f g has only simple non-zero eigenvalues is a residual set in C ( M , ) . As a consequence we prove that if P g has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the C -topology. We also prove that the eigenvalues of P g depend continuously on g in the C -topology, provided P g is strongly elliptic. As an application of our work, we show that if P g acts on C ( M ) (e.g. GJMS operators), its non-zero eigenvalues are generically simple.

How to cite

top

Canzani, Yaiza. "On the multiplicity of eigenvalues of conformally covariant operators." Annales de l’institut Fourier 64.3 (2014): 947-970. <http://eudml.org/doc/275432>.

@article{Canzani2014,
abstract = {Let $(M,g)$ be a compact Riemannian manifold and $P_g$ an elliptic, formally self-adjoint, conformally covariant operator of order $m$ acting on smooth sections of a bundle over $M$. We prove that if $P_g$ has no rigid eigenspaces (see Definition 2.2), the set of functions $f\in C^\infty (M, \mathbb\{R\})$ for which $P_\{e^fg\}$ has only simple non-zero eigenvalues is a residual set in $C^\infty (M,\mathbb\{R\})$. As a consequence we prove that if $P_g$ has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the $C^\infty $-topology. We also prove that the eigenvalues of $P_g$ depend continuously on $g$ in the $C^\infty $-topology, provided $P_g$ is strongly elliptic. As an application of our work, we show that if $P_g$ acts on $C^\infty (M)$ (e.g. GJMS operators), its non-zero eigenvalues are generically simple.},
affiliation = {Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. West, Montréal QC H3A 2K6, Canada.},
author = {Canzani, Yaiza},
journal = {Annales de l’institut Fourier},
keywords = {Multiplicity; eigenvalues; conformal geometry; conformally covariant operators; GJMS operators; rigid eigenspace},
language = {eng},
number = {3},
pages = {947-970},
publisher = {Association des Annales de l’institut Fourier},
title = {On the multiplicity of eigenvalues of conformally covariant operators},
url = {http://eudml.org/doc/275432},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Canzani, Yaiza
TI - On the multiplicity of eigenvalues of conformally covariant operators
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 947
EP - 970
AB - Let $(M,g)$ be a compact Riemannian manifold and $P_g$ an elliptic, formally self-adjoint, conformally covariant operator of order $m$ acting on smooth sections of a bundle over $M$. We prove that if $P_g$ has no rigid eigenspaces (see Definition 2.2), the set of functions $f\in C^\infty (M, \mathbb{R})$ for which $P_{e^fg}$ has only simple non-zero eigenvalues is a residual set in $C^\infty (M,\mathbb{R})$. As a consequence we prove that if $P_g$ has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the $C^\infty $-topology. We also prove that the eigenvalues of $P_g$ depend continuously on $g$ in the $C^\infty $-topology, provided $P_g$ is strongly elliptic. As an application of our work, we show that if $P_g$ acts on $C^\infty (M)$ (e.g. GJMS operators), its non-zero eigenvalues are generically simple.
LA - eng
KW - Multiplicity; eigenvalues; conformal geometry; conformally covariant operators; GJMS operators; rigid eigenspace
UR - http://eudml.org/doc/275432
ER -

References

top
  1. B. Ammann, P. Jammes, The supremum of conformally covariant eigenvalues in a conformal class, Variational Problems in Differential Geometry 394 (2011), 1-23, Cambridge Zbl1243.53070
  2. S. Bando, H. Urakawa, Generic properties of the eigenvalue of the laplacian for compact riemannian manifolds, Tohoku Mathematical Journal 35 (1983), 155-172 MR699924
  3. R. Baston, Verma modules and differential conformal invariants, Differential Geometry 32 (1990), 851-898 Zbl0732.53011MR1078164
  4. H. Bateman, The transformation of the electrodynamical equations, Proceedings of the London Mathematical Society 2 (1910), 223-264 Zbl41.0942.03MR1577429
  5. D. Bleecker, L. Wilson, Splitting the spectrum of a riemannian manifold, SIAM Journal on Mathematical Analysis 11 (1980) Zbl0449.58021MR586909
  6. T. Branson, Conformally convariant equations on differential forms, Communications in Partial Differential Equations 7 (1982), 393-431 Zbl0532.53021MR652815
  7. T. Branson, Differential operators canonically associated to a conformal structure, Mathematica scandinavica 57 (1985), 293-345 Zbl0596.53009MR832360
  8. T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Transactions of the American Mathematical Society 347 (1995), 3671-3742 Zbl0848.58047MR1316845
  9. T. Branson, S. Chang, P. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Communications in Mathematical Physics 149 (1992), 241-262 Zbl0761.58053MR1186028
  10. T. Branson, A. Gover, Conformally invariant operators, differential forms, cohomology and a generalisation of q-curvature, Communications in Partial Differential Equations 30 (2005), 1611-1669 Zbl1226.58011MR2182307
  11. T. Branson, O. Hijazi, Bochner-weitzenböck formulas associated with the rarita-schwinger operator, International Journal of Mathematics 13 (2002), 137-182 Zbl1109.53306MR1891206
  12. T. Branson, B. Ørsted, Conformal indices of riemannian manifolds, Compositio mathematica 60 (1986), 261-293 Zbl0608.58039MR869104
  13. T. Branson, B. Ørsted, Generalized gradients and asymptotics of the functional trace, (1988), Odense Universitet, Institut for Mathematik og Datalogi Zbl0662.53038
  14. T. Branson, B. Ørsted, Conformal geometry and global invariants, Differential Geometry and its Applications 1 (1991), 279-308 Zbl0785.53025MR1244447
  15. T. Branson, B. Ørsted, Explicit functional determinants in four dimensions, Proceedings of the American Mathematical Society (1991), 669-682 Zbl0762.47019MR1050018
  16. M. Dahl, Dirac eigenvalues for generic metrics on three-manifolds, Annals of Global Analysis and Geometry 24 (2003), 95-100 Zbl1035.53065MR1990087
  17. M. Eastwood, Notes on conformal differential geometry, Supplemento ai Rendiconti del Circolo Matematico di Palermo 43 (1996), 57-76 Zbl0911.53020MR1463509
  18. A. Enciso, D. Peralta-Salas, Nondegeneracy of the eigenvalues of the hodge laplacian for generic metrics on 3-manifolds, Transactions of the American Mathematical Society 364 (2012), 4207-4224 Zbl1286.58021MR2912451
  19. N. Ginoux, The dirac spectrum, 1976 (2009), Springer Verlag Zbl1186.58020MR2509837
  20. A. Gover, Conformally invariant operators of standard type, The Quarterly Journal of Mathematics 40 (1989) Zbl0683.53063MR997647
  21. A. Gover, Conformal de rham hodge theory and operators generalising the q-curvature, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 75 (2005), 109-137 Zbl1104.53033MR2152358
  22. C. Graham, R. Jenne, L. Mason, G. Sparling, Conformally invariant powers of the laplacian, i: Existence, Journal of the London Mathematical Society 2 (1992) Zbl0726.53010MR1190438
  23. C. Graham, M. Zworski, Scattering matrix in conformal geometry, Inventiones Mathematicae 152 (2003), 89-118 Zbl1030.58022MR1965361
  24. N. Hitchin, Harmonic spinors, Advances in Mathematics 14 (1974) Zbl0284.58016MR358873
  25. Uhlenbeckn K., Generic properties of eigenfunctions, American Journal of Mathematics 98 (1976), 1059-1078 Zbl0355.58017MR464332
  26. K. Kodaira, Complex Manifolds and Deformation of Complex Structures, 283 (1986), Springer Zbl0581.32012MR815922
  27. K. Kodaira, D. Spencer, On deformations of complex analytic structures, iii. stability theorems for complex structures, The Annals of Mathematics 71 (1960), 43-76 Zbl0128.16902MR115189
  28. H. Lawson, M. Michelsohn, Spin geometry, 38 (1989), Princeton University Press Zbl0688.57001MR1031992
  29. S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds, (1983) Zbl1145.53053
  30. F. Rellich, Perturbation theory of eigenvalue problems, (1969), Routledge Zbl0181.42002MR240668
  31. M. Teytel, How rare are multiple eigenvalues?, Communications on pure and applied mathematics 52 (1999), 917-934 Zbl0942.47012MR1686977
  32. K. Wojciechowski, B. Booss, Analysis, geometry and topology of elliptic operators, (2006), World Scientific Pub Co Inc MR2254829
  33. V. Wünsch, On conformally invariant differential operators, Mathematische Nachrichten 129 (1986), 269-281 Zbl0619.53008MR864639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.