Conformal indices of riemannian manifolds
Thomas P. Branson; Bent Ørsted
Compositio Mathematica (1986)
- Volume: 60, Issue: 3, page 261-293
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBranson, Thomas P., and Ørsted, Bent. "Conformal indices of riemannian manifolds." Compositio Mathematica 60.3 (1986): 261-293. <http://eudml.org/doc/89809>.
@article{Branson1986,
author = {Branson, Thomas P., Ørsted, Bent},
journal = {Compositio Mathematica},
keywords = {Minakshisundaram-Pleijel coefficients; heat kernel; conformal index; conformal structure},
language = {eng},
number = {3},
pages = {261-293},
publisher = {Martinus Nijhoff Publishers},
title = {Conformal indices of riemannian manifolds},
url = {http://eudml.org/doc/89809},
volume = {60},
year = {1986},
}
TY - JOUR
AU - Branson, Thomas P.
AU - Ørsted, Bent
TI - Conformal indices of riemannian manifolds
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 3
SP - 261
EP - 293
LA - eng
KW - Minakshisundaram-Pleijel coefficients; heat kernel; conformal index; conformal structure
UR - http://eudml.org/doc/89809
ER -
References
top- [1] M. Berger, P. Gauduchon, and E. Mazet: Le Spectre d'une Variété Riemannienne. Springer-Verlag, Berlin (1971). Zbl0223.53034MR282313
- [2] D. Bleecker: Determination of a Riemannian metric from the first variation of its spectrum. Amer. J. Math.107 (1985) 815-831. Zbl0577.58032MR796904
- [3] T. Branson: Conformally covariant equations on differential forms. Comm. in P.D.E.7 (1982) 392-431. Zbl0532.53021MR652815
- [4] T. Branson: Differential operators canonically associated to a conformal structure. Math. Scand.57 (1985) 293-345. Zbl0596.53009MR832360
- [5] T. Branson and B. Ørsted: Conformal spectral geometry, preprint. Purdue University (1984).
- [6] D. Burns, K. Diederich and S. Shnider: Distinguished curves in pseudoconvex boundaries. Duke Math. J.44 (1977) 407-431. Zbl0382.32011MR445009
- [7] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984). Zbl0551.53001MR768584
- [8] Y. Choquet-Bruhat and D. Christodoulou: Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3 + 1 dimensions. A nn. Sci. École Norm. Sup. (4) 14 (1981) 481-500. Zbl0499.35076MR654209
- [9] J. Dowker and G. Kennedy: Finite temperature and boundary effects in static space-times. J. Phys.A11 (1978) 895-920. MR479266
- [10] C. Fefferman: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. of Math.103 (1976) 395-416. Zbl0322.32012MR407320
- [11] C. Fefferman and C.R. Graham: Conformal invariants. Proceedings of the Symposium: Elie Cartan et les mathématiques d'aujourd'hui, Asterisque, to appear. Zbl0602.53007MR837196
- [12] F. Friedlander: The Wave Equation on a Curved Space-time. Cambridge University Press (1975). Zbl0316.53021MR460898
- [13] P. Gilkey: The Index Theorem and the Heat Equation. Publish or Perish, Boston (1974). Zbl0287.58006MR458504
- [14] P. Gilkey: Spectral geometry of a Riemannian manifold. J. Diff. Geom.10 (1975) 601-618. Zbl0316.53035MR400315
- [15] P. Gilkey: Lefschetz fixed point formulas and the heat equation, in Partial Differential Equations and Geometry, C. Byrnes (ed.), Lecture Notes in Pure and Applied Mathematics, Vol.. 48. Marcel Dekker Inc., New York (1979). Zbl0405.58044MR535591
- [16] P. Gilkey: The spectral geometry of the higher order Laplacian. Duke Math. J.47 (1980) 511-528. Zbl0448.58026MR587163
- [17] P. Gilkey: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Publish or Perish, Wilmington, Delaware (1984). Zbl0565.58035MR783634
- [18] P. Günther and V. Wünsch: On some polynomial conformal tensors. Math. Nachr.124 (1985), 217-238. Zbl0592.53012MR827899
- [19] S. Hawking: Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys.55 (1977) 133-148. Zbl0407.58024MR524257
- [20] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978). Zbl0451.53038MR514561
- [21] D. Jerison and J.M. Lee: A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds. in Microlocal Analysis. Contemporary Math. 27 (1984) 57-63. Zbl0577.53035MR741039
- [22] Y. Kosmann: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. (4) XCI (1972) 317-395. Zbl0231.53065MR312413
- [23] Y. Kosmann: Degrés conformes des laplaciens et des opérateurs de Dirac. C.R. Acud. Soi. Paris Ser. A280 (1975) 283-285. Zbl0296.53012MR391187
- [24] R. Kubawara: On isospectral deformations of Riemannian metrics II. Compositio Math.47 (1982) 195-205. Zbl0505.53019MR677020
- [25] J. Lee: The Fefferman metric and pseudohermitian invariants, preprint. Harvard University (1985).
- [26] K. Miller and F. Murray: Existence Theorems for Ordinary Differential Equations. New York University Press (1954). Zbl0056.31301MR64934
- [27] S. Paneitz: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint. M.I.T. (1983).
- [28] T. Parker and S. Rosenberg: Invariants of conformal Laplacians, preprint. Brandeis University (1985).
- [29] D. Ray and I. Singer: R-torsion and the Laplacian on Riemannian manifolds. Advances in Math.7 (1971) 145-210. Zbl0239.58014MR295381
- [30] S. Rosenberg: The variation of the Rham zeta function, preprint. Brandeis University (1984). MR869220
- [31] R. Schimming: Lineare Differentialoperatoren zweiter Ordnung mit metrischem Hauptteil und die Methode der Koinzidenzwerte in der Riemannschen Geometrie. Beitr. z. Analysis15 (1981) 77-91. Zbl0504.35021MR614779
- [32] R. Seeley: Complex powers of an elliptic operator. Proc. Symp. Pure and Applied Math.10 (1967) 288-307. Zbl0159.15504MR237943
- [33] P. Seeley: Topics in pseudo-differential operators, in Pseudo-Differential Operators. Centro Internazionale Mathematico Estivo (1969).
- [34] V. Wünsch: Konforminvariante Variationsprobleme und Huygenssches Prinzip. Math. Nachr.120 (1985) 175-193. MR808340
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.