μ -constant monodromy groups and marked singularities

Claus Hertling[1]

  • [1] Universität Mannheim Lehrstuhl für Mathematik VI Seminargebäude A 5, 6 68131 Mannheim (Germany)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2643-2680
  • ISSN: 0373-0956

Abstract

top
μ -constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo ± id . Second, marked singularities are defined and global moduli spaces for right equivalence classes of them are established. The conjecture on the group would imply that these moduli spaces are connected. The relation with Torelli type problems is discussed and a new global Torelli type conjecture for marked singularities is formulated. All conjectures are proved for the simple and 22 of the 28 exceptional singularities.

How to cite

top

Hertling, Claus. "$\mu $-constant monodromy groups and marked singularities." Annales de l’institut Fourier 61.7 (2011): 2643-2680. <http://eudml.org/doc/275459>.

@article{Hertling2011,
abstract = {$\mu $-constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo $\pm \operatorname\{id\}$. Second, marked singularities are defined and global moduli spaces for right equivalence classes of them are established. The conjecture on the group would imply that these moduli spaces are connected. The relation with Torelli type problems is discussed and a new global Torelli type conjecture for marked singularities is formulated. All conjectures are proved for the simple and $22$ of the $28$ exceptional singularities.},
affiliation = {Universität Mannheim Lehrstuhl für Mathematik VI Seminargebäude A 5, 6 68131 Mannheim (Germany)},
author = {Hertling, Claus},
journal = {Annales de l’institut Fourier},
keywords = {$\mu $-constant deformation; monodromy group; marked singularity; moduli space; Torelli type problem; symmetries of singularities; -constant deformatiom},
language = {eng},
number = {7},
pages = {2643-2680},
publisher = {Association des Annales de l’institut Fourier},
title = {$\mu $-constant monodromy groups and marked singularities},
url = {http://eudml.org/doc/275459},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Hertling, Claus
TI - $\mu $-constant monodromy groups and marked singularities
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2643
EP - 2680
AB - $\mu $-constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo $\pm \operatorname{id}$. Second, marked singularities are defined and global moduli spaces for right equivalence classes of them are established. The conjecture on the group would imply that these moduli spaces are connected. The relation with Torelli type problems is discussed and a new global Torelli type conjecture for marked singularities is formulated. All conjectures are proved for the simple and $22$ of the $28$ exceptional singularities.
LA - eng
KW - $\mu $-constant deformation; monodromy group; marked singularity; moduli space; Torelli type problem; symmetries of singularities; -constant deformatiom
UR - http://eudml.org/doc/275459
ER -

References

top
  1. Norbert A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 54 (1979), 318-327 Zbl0441.32004MR535062
  2. V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I, 82 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0304.57018MR516034
  3. V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston Inc., Boston, MA Zbl0554.58001MR777682
  4. Th. Bröcker, Differentiable germs and catastrophes, (1975), Cambridge University Press, Cambridge Zbl0659.58002MR966191
  5. Wolfgang Ebeling, Functions of several complex variables and their singularities, 83 (2007), American Mathematical Society, Providence, RI Zbl0302.58006MR494220
  6. A. M. Gabrièlov, Bifurcations, Dynkin diagrams and the modality of isolated singularities, Funkcional. Anal. i Priložen. 8 (1974), 7-12 Zbl1188.32001MR2319634
  7. Claus Hertling, Analytische Invarianten bei den unimodularen und bimodularen Hyperflächensingularitäten, (1993), Universität Bonn Mathematisches Institut, Bonn Zbl0343.32002MR430286
  8. Claus Hertling, Ein Torellisatz für die unimodalen und bimodularen Hyperflächensingularitäten, Math. Ann. 302 (1995), 359-394 Zbl0344.32007MR440066
  9. Claus Hertling, Brieskorn lattices and Torelli type theorems for cubics in P 3 and for Brieskorn-Pham singularities with coprime exponents, Singularities (Oberwolfach, 1996) 162 (1998), 167-194, Birkhäuser, Basel Zbl0833.32006MR1286737
  10. Claus Hertling, Classifying spaces for polarized mixed Hodge structures and for Brieskorn lattices, Compositio Math. 116 (1999), 1-37 Zbl0843.32020MR1336340
  11. Claus Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press, Cambridge Zbl0915.14023MR1652473
  12. Claus Hertling, Generic Torelli for semiquasihomogeneous singularities, Trends in singularities (2002), 115-140, Birkhäuser, Basel Zbl0922.32019MR1669448
  13. Claus Hertling, Yu. Manin, Weak Frobenius manifolds, Internat. Math. Res. Notices (1999), 277-286 Zbl1025.32025MR1900783
  14. Harald Holmann, Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), 327-360 Zbl1023.14018MR1924259
  15. Valentine S. Kulikov, Mixed Hodge structures and singularities, 132 (1998), Cambridge University Press, Cambridge Zbl0960.58003MR1680372
  16. Bernard Malgrange, Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7 (1974), 405-430 (1975) Zbl0156.30603MR150789
  17. John N. Mather, Stability of C mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. (1968), 279-308 Zbl0902.14005MR1621831
  18. F. Michel, C. Weber, Sur le rôle de la monodromie entière dans la topologie des singularités, Ann. Inst. Fourier (Grenoble) 36 (1986), 183-218 Zbl0351.32009MR399088
  19. John Milnor, Singular points of complex hypersurfaces, (1968), Princeton University Press, Princeton, N.J. Zbl0305.32008MR372243
  20. Peter Orlik, On the homology of weighted homogeneous manifolds, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part I (1972), 260-269. Lecture Notes in Math., Vol. 298, Springer, Berlin Zbl0159.25001
  21. Morihiko Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72 Zbl0557.57017MR840719
  22. Morihiko Saito, Period mapping via Brieskorn modules, Bull. Soc. Math. France 119 (1991), 141-171 Zbl0184.48405MR239612
  23. J. Scherk, J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), 641-665 Zbl0618.14002MR430307
  24. Peter Slodowy, Einige Bemerkungen zur Entfaltung symmetrischer Funktionen, Math. Z. 158 (1978), 157-170 Zbl0644.32005MR1011977
  25. Bernard Teissier, Déformations à type topologique constant, Quelques problèmes de modules (Sém. de Géométrie Analytique, École Norm. Sup., Paris, 1971–1972) (1974), 215-249. Astérisque, No. 16, Soc. Math. France, Paris Zbl0760.32009MR1116843
  26. Lê Dũng Tráng, C. P. Ramanujam, The invariance of Milnor’s number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 67-78 Zbl0618.14002MR790119
  27. A. N. Varchenko, The asymptotics of holomorphic forms determine a mixed Hodge structure, Sov. Math. Dokl. 22 (1980), 772-775 Zbl0352.58009MR474379
  28. C. T. C. Wall, A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 169-175 Zbl0373.14007MR485870
  29. C. T. C. Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 347-354 Zbl0301.32013MR414931
  30. Jian Ming Yu, Kombinatorische Geometrie der Stokesregionen, (1990), Universität Bonn Mathematisches Institut, Bonn Zbl0516.14007
  31. Jian Ming Yu, Galois group of Lyashko-Looijenga mapping, Math. Z. 232 (1999), 321-330 Zbl0427.32010MR572095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.