-constant monodromy groups and marked singularities
- [1] Universität Mannheim Lehrstuhl für Mathematik VI Seminargebäude A 5, 6 68131 Mannheim (Germany)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2643-2680
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHertling, Claus. "$\mu $-constant monodromy groups and marked singularities." Annales de l’institut Fourier 61.7 (2011): 2643-2680. <http://eudml.org/doc/275459>.
@article{Hertling2011,
abstract = {$\mu $-constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo $\pm \operatorname\{id\}$. Second, marked singularities are defined and global moduli spaces for right equivalence classes of them are established. The conjecture on the group would imply that these moduli spaces are connected. The relation with Torelli type problems is discussed and a new global Torelli type conjecture for marked singularities is formulated. All conjectures are proved for the simple and $22$ of the $28$ exceptional singularities.},
affiliation = {Universität Mannheim Lehrstuhl für Mathematik VI Seminargebäude A 5, 6 68131 Mannheim (Germany)},
author = {Hertling, Claus},
journal = {Annales de l’institut Fourier},
keywords = {$\mu $-constant deformation; monodromy group; marked singularity; moduli space; Torelli type problem; symmetries of singularities; -constant deformatiom},
language = {eng},
number = {7},
pages = {2643-2680},
publisher = {Association des Annales de l’institut Fourier},
title = {$\mu $-constant monodromy groups and marked singularities},
url = {http://eudml.org/doc/275459},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Hertling, Claus
TI - $\mu $-constant monodromy groups and marked singularities
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2643
EP - 2680
AB - $\mu $-constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo $\pm \operatorname{id}$. Second, marked singularities are defined and global moduli spaces for right equivalence classes of them are established. The conjecture on the group would imply that these moduli spaces are connected. The relation with Torelli type problems is discussed and a new global Torelli type conjecture for marked singularities is formulated. All conjectures are proved for the simple and $22$ of the $28$ exceptional singularities.
LA - eng
KW - $\mu $-constant deformation; monodromy group; marked singularity; moduli space; Torelli type problem; symmetries of singularities; -constant deformatiom
UR - http://eudml.org/doc/275459
ER -
References
top- Norbert A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 54 (1979), 318-327 Zbl0441.32004MR535062
- V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I, 82 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0304.57018MR516034
- V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston Inc., Boston, MA Zbl0554.58001MR777682
- Th. Bröcker, Differentiable germs and catastrophes, (1975), Cambridge University Press, Cambridge Zbl0659.58002MR966191
- Wolfgang Ebeling, Functions of several complex variables and their singularities, 83 (2007), American Mathematical Society, Providence, RI Zbl0302.58006MR494220
- A. M. Gabrièlov, Bifurcations, Dynkin diagrams and the modality of isolated singularities, Funkcional. Anal. i Priložen. 8 (1974), 7-12 Zbl1188.32001MR2319634
- Claus Hertling, Analytische Invarianten bei den unimodularen und bimodularen Hyperflächensingularitäten, (1993), Universität Bonn Mathematisches Institut, Bonn Zbl0343.32002MR430286
- Claus Hertling, Ein Torellisatz für die unimodalen und bimodularen Hyperflächensingularitäten, Math. Ann. 302 (1995), 359-394 Zbl0344.32007MR440066
- Claus Hertling, Brieskorn lattices and Torelli type theorems for cubics in and for Brieskorn-Pham singularities with coprime exponents, Singularities (Oberwolfach, 1996) 162 (1998), 167-194, Birkhäuser, Basel Zbl0833.32006MR1286737
- Claus Hertling, Classifying spaces for polarized mixed Hodge structures and for Brieskorn lattices, Compositio Math. 116 (1999), 1-37 Zbl0843.32020MR1336340
- Claus Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press, Cambridge Zbl0915.14023MR1652473
- Claus Hertling, Generic Torelli for semiquasihomogeneous singularities, Trends in singularities (2002), 115-140, Birkhäuser, Basel Zbl0922.32019MR1669448
- Claus Hertling, Yu. Manin, Weak Frobenius manifolds, Internat. Math. Res. Notices (1999), 277-286 Zbl1025.32025MR1900783
- Harald Holmann, Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), 327-360 Zbl1023.14018MR1924259
- Valentine S. Kulikov, Mixed Hodge structures and singularities, 132 (1998), Cambridge University Press, Cambridge Zbl0960.58003MR1680372
- Bernard Malgrange, Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7 (1974), 405-430 (1975) Zbl0156.30603MR150789
- John N. Mather, Stability of mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. (1968), 279-308 Zbl0902.14005MR1621831
- F. Michel, C. Weber, Sur le rôle de la monodromie entière dans la topologie des singularités, Ann. Inst. Fourier (Grenoble) 36 (1986), 183-218 Zbl0351.32009MR399088
- John Milnor, Singular points of complex hypersurfaces, (1968), Princeton University Press, Princeton, N.J. Zbl0305.32008MR372243
- Peter Orlik, On the homology of weighted homogeneous manifolds, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part I (1972), 260-269. Lecture Notes in Math., Vol. 298, Springer, Berlin Zbl0159.25001
- Morihiko Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72 Zbl0557.57017MR840719
- Morihiko Saito, Period mapping via Brieskorn modules, Bull. Soc. Math. France 119 (1991), 141-171 Zbl0184.48405MR239612
- J. Scherk, J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), 641-665 Zbl0618.14002MR430307
- Peter Slodowy, Einige Bemerkungen zur Entfaltung symmetrischer Funktionen, Math. Z. 158 (1978), 157-170 Zbl0644.32005MR1011977
- Bernard Teissier, Déformations à type topologique constant, Quelques problèmes de modules (Sém. de Géométrie Analytique, École Norm. Sup., Paris, 1971–1972) (1974), 215-249. Astérisque, No. 16, Soc. Math. France, Paris Zbl0760.32009MR1116843
- Lê Dũng Tráng, C. P. Ramanujam, The invariance of Milnor’s number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 67-78 Zbl0618.14002MR790119
- A. N. Varchenko, The asymptotics of holomorphic forms determine a mixed Hodge structure, Sov. Math. Dokl. 22 (1980), 772-775 Zbl0352.58009MR474379
- C. T. C. Wall, A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 169-175 Zbl0373.14007MR485870
- C. T. C. Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 347-354 Zbl0301.32013MR414931
- Jian Ming Yu, Kombinatorische Geometrie der Stokesregionen, (1990), Universität Bonn Mathematisches Institut, Bonn Zbl0516.14007
- Jian Ming Yu, Galois group of Lyashko-Looijenga mapping, Math. Z. 232 (1999), 321-330 Zbl0427.32010MR572095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.