On malnormal peripheral subgroups of the fundamental group of a -manifold
Pierre de la Harpe[1]; Claude Weber[1]
- [1] Section de mathématiques, Université de Genève, C.P. 64, CH–1211 Genève 4, Suisse
Confluentes Mathematici (2014)
- Volume: 6, Issue: 1, page 41-64
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topde la Harpe, Pierre, and Weber, Claude. "On malnormal peripheral subgroups of the fundamental group of a $3$-manifold." Confluentes Mathematici 6.1 (2014): 41-64. <http://eudml.org/doc/275465>.
@article{delaHarpe2014,
abstract = {Let $K$ be a non-trivial knot in the $3$-sphere, $E_K$ its exterior, $G_K = \pi _1(E_K)$ its group, and $P_K = \pi _1(\partial E_K) \subset G_K$ its peripheral subgroup. We show that $P_K$ is malnormal in $G_K$, namely that $gP_Kg^\{-1\} \cap P_K = \lbrace e\rbrace $ for any $g \in G_K$ with $g \notin P_K$, unless $K$ is in one of the following three classes: torus knots, cable knots, and composite knots; these are exactly the classes for which there exist annuli in $E_K$ attached to $T_K$ which are not boundary parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral subgroups in the fundamental group of a compact orientable irreducible $3$-manifold of which the boundary is a non-empty union of tori (Theorem 3). Proofs are written with non-expert readers in mind. Half of our paper (Appendices A to D) is a reminder of some three-manifold topology as it flourished before the Thurston revolution.In a companion paper [15], we collect general facts on malnormal subgroups and Frobenius groups, and we review a number of examples.},
affiliation = {Section de mathématiques, Université de Genève, C.P. 64, CH–1211 Genève 4, Suisse; Section de mathématiques, Université de Genève, C.P. 64, CH–1211 Genève 4, Suisse},
author = {de la Harpe, Pierre, Weber, Claude},
journal = {Confluentes Mathematici},
keywords = {knot; knot group; peripheral subgroup; torus knot; cable knot; composite knot; malnormal subgroup; $3$-manifold; 3-manifold},
language = {eng},
number = {1},
pages = {41-64},
publisher = {Institut Camille Jordan},
title = {On malnormal peripheral subgroups of the fundamental group of a $3$-manifold},
url = {http://eudml.org/doc/275465},
volume = {6},
year = {2014},
}
TY - JOUR
AU - de la Harpe, Pierre
AU - Weber, Claude
TI - On malnormal peripheral subgroups of the fundamental group of a $3$-manifold
JO - Confluentes Mathematici
PY - 2014
PB - Institut Camille Jordan
VL - 6
IS - 1
SP - 41
EP - 64
AB - Let $K$ be a non-trivial knot in the $3$-sphere, $E_K$ its exterior, $G_K = \pi _1(E_K)$ its group, and $P_K = \pi _1(\partial E_K) \subset G_K$ its peripheral subgroup. We show that $P_K$ is malnormal in $G_K$, namely that $gP_Kg^{-1} \cap P_K = \lbrace e\rbrace $ for any $g \in G_K$ with $g \notin P_K$, unless $K$ is in one of the following three classes: torus knots, cable knots, and composite knots; these are exactly the classes for which there exist annuli in $E_K$ attached to $T_K$ which are not boundary parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral subgroups in the fundamental group of a compact orientable irreducible $3$-manifold of which the boundary is a non-empty union of tori (Theorem 3). Proofs are written with non-expert readers in mind. Half of our paper (Appendices A to D) is a reminder of some three-manifold topology as it flourished before the Thurston revolution.In a companion paper [15], we collect general facts on malnormal subgroups and Frobenius groups, and we review a number of examples.
LA - eng
KW - knot; knot group; peripheral subgroup; torus knot; cable knot; composite knot; malnormal subgroup; $3$-manifold; 3-manifold
UR - http://eudml.org/doc/275465
ER -
References
top- R.H. Bing and Joseph M. Martin. Cubes with knotted holes, Trans. Amer. Math. Soc., 151:217–231, 1971. Zbl0213.25005MR278287
- Michel Boileau. Uniformisation en dimension trois, Sém. Bourbaki, Exp. 855, Astérisque 266, 137–174, 2000. Zbl0942.57013MR1772673
- Francis Bonahon. Geometric Structures on -manifolds, in: Handbook of Geometric Topology (R.B. Daverman, R. Sher, Editors), 93–164, Elsevier, 2002. Zbl0997.57032MR1886669
- Francis Bonahon and Laurence C. Siebenmann. New geometric splittings of classical knots and the classification and symmetries of arborescent knots, first version (around 1979) unpublished, revised version (June 12, 2010) http://www-bcf.usc.edu/~fbonahon/Research/Preprints/BonSieb.pdf
- Steven Boyer. Dehn surgery on knots, in: Handbook of Geometric Topology (R.B. Daverman, R. Sher, Editors), 165–218, Elsevier, 2002. Zbl1058.57004MR1886670
- Ryan Budney. JSJ decompositions of knot and link complements in , L’Enseignement Math., 52:319–359, 2006. Zbl1114.57004MR2300613
- Gerhard Burde and Kunio Murasugi. Links and Seifert fiber spaces, Duke J. Math., 37:89–93, 1970. Zbl0195.54003MR253313
- James W. Cannon and C.D. Feustel. Essential embeddings of annuli and Möbius bands in -manifolds, Trans. Amer. Math. Soc., 215:219–239, 1976. Zbl0314.55004MR391094
- Albrecht Dold. Lectures on algebraic topology, Springer, 1972. Zbl0872.55001MR415602
- David B.A. Epstein. Periodic flows on three-manifolds, Ann. Math., 95:66–82, 1972. Zbl0231.58009MR288785
- C.D. Feustel. Some applications of Waldhausen’s results on irreducible surfaces, Trans. Amer. Math. Soc., 149:575–583, 1970. Zbl0203.25901MR261575
- André Gramain. Rapport sur la théorie classique des noeuds (2ème partie), Sém. Bourbaki, exp. 732, Astérisque 201–203, 89–113, 1991. Zbl0752.57003MR1157839
- André Haefliger. Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16:367–397, 1962. Zbl0122.40702MR189060
- Allen Hatcher. Notes on basic -manifold topology, Course Notes, September 2000, http://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html
- Pierre de la Harpe and Claude Weber, with an appendix by Denis Osin. Malnormal subgroups and Frobenius groups: basics and examples, Confl. Math., 6:65–76, 2014. Zbl1327.20030
- John Hempel. –manifolds, Ann. Math. Studies, Princeton University Press, 1976. Zbl0345.57001MR415619
- William Jaco. Lectures on three-manifold topology, Regional Conference Series in Mathematics 43, Amer. Math. Soc., 1980. Zbl0433.57001MR565450
- William H. Jaco and Peter B. Shalen. Seifert fibered spaces in -manifolds, in: Geometric Topology (Proc. Georgia Top. Conf., Athens, Ga., 1977), 91–99, Academic Press, 1979. Zbl0471.57001MR537728
- William H. Jaco and Peter B. Shalen. Seifert fibered spaces in -manifolds, Mem. Amer. Math. Soc. 21, 220(1), 1979. Zbl0415.57005MR539411
- Klaus Johannson. Homotopy equivalences of -manifolds with boundary, Lecture Notes in Mathematics 761, Springer 1979. Zbl0412.57007MR551744
- Rinat Kashaev. On ring-valued invariants of topological pairs, preprint, 21 January 2007, arXiv:math/07015432v2 Zbl1133.58003
- Rinat Kashaev. -groupoids in knot theory, Geom. Dedicata, 150:105–130, 2011. Zbl1245.57015MR2753700
- Jean-Louis Koszul. Sur certains groupes de transformations de Lie, in: Géométrie différentielle, Strasbourg, 26 mai – 1er juin 1953, 137–141, CNRS, 1953. Zbl0101.16201
- Walter D. Neumann and Gadde A. Swarup. Canonical decompositions of -manifolds, Geom. & Top., 1:21–40, 1997. Zbl0886.57009MR1469066
- Peter Orlik and Frank Raymond. Actions of on -manifolds, in: Prof. Conf. Transform. Groups, New Orleans 1967, 297–318, Springer, 1968. Zbl0172.25402MR263112
- Frank Raymond. Classification of the actions of the circle on -manifolds, Trans. Amer. Math. Soc., 131:51–78, 1968. Zbl0157.30602MR219086
- Dale Rolfsen. Knots and links, Publish or Perish, 1976. Zbl0854.57002MR515288
- Horst Schubert. Knoten und Vollringe, Acta Math., 90(1):131–286, 1953. Zbl0051.40403MR72482
- Peter Scott. The geometries of -manifolds, Bull. Lond. Math. Soc., 15:401–487, 1983, with errata on http://www.math.lsa.umich.edu/~pscott/ Zbl0561.57001MR705527
- Herbert Seifert. Topologie dreidimensionaler gefaserter Räume, Acta Math., 60:147–288, 1933. Translated by W. Heil, appendix to [31], 359–422. Zbl0006.08304MR1555366
- Herbert Seifert and William Threlfall. A textbook of topology, Academic Press, 1980. German original: Lehrbuch der Topologie, Teubner, 1934. MR575168
- Jonathan Simon. Roots and centralizers of peripheral elements in knot groups, Math. Ann., 222:205–209, 1976. Zbl0314.55003MR418079
- William P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6:357–381, 1982. Zbl0496.57005MR648524
- Friedhelm Waldhausen. Eine Klasse von -dimensionalen Mannigfaltigkeiten I & II, Inv. Math., 3:308–333 & 4:87–117, 1967. Zbl0168.44503MR235576
- Friedhelm Waldhausen. On irreducible -manifolds which are sufficiently large, Ann. Math., 87:56–88, 1968. Zbl0157.30603MR224099
- Friedhelm Waldhausen. On the determination of some bounded -manifolds by their fundamental groups alone, Proc. Int. Symposium on Top. and its Appl. (Herceg-Novi, Yugoslavia, 1968), 331–332, Beograd, 1969. Zbl0202.54702
- Friedhelm Waldhausen. Recent results on sufficiently large -manifolds, Proc. Symposia in Pure Math., 32:21–38, 1978. Zbl0391.57011MR520520
- Wilbur Whitten. Algebraic and geometric characterizations of knots, Inv. Math., 26:259–270, 1974. Zbl0291.55004MR365548
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.