Contracting rigid germs in higher dimensions
- [1] Fondation Mathématique Jacques Hadamard, Département de Mathématiques, UMR 8628 Université Paris-Sud 11-CNRS, Bâtiment 425, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay Cedex, France. Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 5, page 1913-1950
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRuggiero, Matteo. "Contracting rigid germs in higher dimensions." Annales de l’institut Fourier 63.5 (2013): 1913-1950. <http://eudml.org/doc/275489>.
@article{Ruggiero2013,
abstract = {Following Favre, we define a holomorphic germ $f:(\mathbb\{C\}^d, 0) \rightarrow (\mathbb\{C\}^d, 0)$ to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of $f$ and its linear action on the fundamental group of the complement of the critical set.},
affiliation = {Fondation Mathématique Jacques Hadamard, Département de Mathématiques, UMR 8628 Université Paris-Sud 11-CNRS, Bâtiment 425, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay Cedex, France. Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.},
author = {Ruggiero, Matteo},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic fixed point germs; contracting rigid germs; normal forms; renormalization; resonances; critical set; holomorphic germs in dimension 3},
language = {eng},
number = {5},
pages = {1913-1950},
publisher = {Association des Annales de l’institut Fourier},
title = {Contracting rigid germs in higher dimensions},
url = {http://eudml.org/doc/275489},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Ruggiero, Matteo
TI - Contracting rigid germs in higher dimensions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1913
EP - 1950
AB - Following Favre, we define a holomorphic germ $f:(\mathbb{C}^d, 0) \rightarrow (\mathbb{C}^d, 0)$ to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of $f$ and its linear action on the fundamental group of the complement of the critical set.
LA - eng
KW - holomorphic fixed point germs; contracting rigid germs; normal forms; renormalization; resonances; critical set; holomorphic germs in dimension 3
UR - http://eudml.org/doc/275489
ER -
References
top- Marco Abate, Jasmin Raissy, Formal Poincaré-Dulac renormalization for holomorphic germs Zbl1283.37056
- Marco Abate, Francesca Tovena, Formal normal forms for holomorphic maps tangent to the identity, Discrete Contin. Dyn. Syst., (suppl.) (2005), 1-10 Zbl1144.37435MR2192654
- François Berteloot, Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 427-483 Zbl1123.37019MR2246412
- Georges Dloussky, Structure des surfaces de Kato, 14 (1984) Zbl0543.32012MR763959
- Georges Dloussky, Sur la classification des germes d’applications holomorphes contractantes, Math. Ann. 280 (1988), 649-661 Zbl0677.32004MR939924
- Georges Dloussky, Karl Oeljeklaus, Matei Toma, Class surfaces with curves, Tohoku Math. J. (2) 55 (2003), 283-309 Zbl1034.32012MR1979500
- Charles Favre, Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl. (9) 79 (2000), 475-514 Zbl0983.32023MR1759437
- Charles Favre, Mattias Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 309-349 Zbl1135.37018MR2339287
- Masahide Kato, Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), 45-84, Kinokuniya Book Store, Tokyo Zbl0421.32010MR578853
- Masahide Kato, On compact complex -folds with lines, Japan. J. Math. (N.S.) 11 (1985), 1-58 Zbl0588.32032MR877456
- Karl Oeljeklaus, Julie Renaud, Compact complex threefolds of class associated to polynomial automorphisms of , Publ. Mat. 50 (2006), 401-411 Zbl1118.32017MR2273667
- Jasmin Raissy, Torus actions in the normalization problem, J. Geom. Anal. 20 (2010), 472-524 Zbl1203.37083MR2579518
- Jean-Pierre Rosay, Walter Rudin, Holomorphic maps from to , Trans. Amer. Math. Soc. 210 (1988), 47-86 Zbl0708.58003MR929658
- Matteo Ruggiero, Rigidification of holomorphic germs with non-invertible differential, Michigan Math. J. 60 (2011) Zbl1300.32018
- Shlomo Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809-824 Zbl0080.29902MR96853
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.