Contracting rigid germs in higher dimensions

Matteo Ruggiero[1]

  • [1] Fondation Mathématique Jacques Hadamard, Département de Mathématiques, UMR 8628 Université Paris-Sud 11-CNRS, Bâtiment 425, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay Cedex, France. Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 5, page 1913-1950
  • ISSN: 0373-0956

Abstract

top
Following Favre, we define a holomorphic germ f : ( d , 0 ) ( d , 0 ) to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of f and its linear action on the fundamental group of the complement of the critical set.

How to cite

top

Ruggiero, Matteo. "Contracting rigid germs in higher dimensions." Annales de l’institut Fourier 63.5 (2013): 1913-1950. <http://eudml.org/doc/275489>.

@article{Ruggiero2013,
abstract = {Following Favre, we define a holomorphic germ $f:(\mathbb\{C\}^d, 0) \rightarrow (\mathbb\{C\}^d, 0)$ to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of $f$ and its linear action on the fundamental group of the complement of the critical set.},
affiliation = {Fondation Mathématique Jacques Hadamard, Département de Mathématiques, UMR 8628 Université Paris-Sud 11-CNRS, Bâtiment 425, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay Cedex, France. Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.},
author = {Ruggiero, Matteo},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic fixed point germs; contracting rigid germs; normal forms; renormalization; resonances; critical set; holomorphic germs in dimension 3},
language = {eng},
number = {5},
pages = {1913-1950},
publisher = {Association des Annales de l’institut Fourier},
title = {Contracting rigid germs in higher dimensions},
url = {http://eudml.org/doc/275489},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Ruggiero, Matteo
TI - Contracting rigid germs in higher dimensions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1913
EP - 1950
AB - Following Favre, we define a holomorphic germ $f:(\mathbb{C}^d, 0) \rightarrow (\mathbb{C}^d, 0)$ to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of $f$ and its linear action on the fundamental group of the complement of the critical set.
LA - eng
KW - holomorphic fixed point germs; contracting rigid germs; normal forms; renormalization; resonances; critical set; holomorphic germs in dimension 3
UR - http://eudml.org/doc/275489
ER -

References

top
  1. Marco Abate, Jasmin Raissy, Formal Poincaré-Dulac renormalization for holomorphic germs Zbl1283.37056
  2. Marco Abate, Francesca Tovena, Formal normal forms for holomorphic maps tangent to the identity, Discrete Contin. Dyn. Syst., (suppl.) (2005), 1-10 Zbl1144.37435MR2192654
  3. François Berteloot, Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 427-483 Zbl1123.37019MR2246412
  4. Georges Dloussky, Structure des surfaces de Kato, 14 (1984) Zbl0543.32012MR763959
  5. Georges Dloussky, Sur la classification des germes d’applications holomorphes contractantes, Math. Ann. 280 (1988), 649-661 Zbl0677.32004MR939924
  6. Georges Dloussky, Karl Oeljeklaus, Matei Toma, Class VII 0 surfaces with b 2 curves, Tohoku Math. J. (2) 55 (2003), 283-309 Zbl1034.32012MR1979500
  7. Charles Favre, Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl. (9) 79 (2000), 475-514 Zbl0983.32023MR1759437
  8. Charles Favre, Mattias Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 309-349 Zbl1135.37018MR2339287
  9. Masahide Kato, Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), 45-84, Kinokuniya Book Store, Tokyo Zbl0421.32010MR578853
  10. Masahide Kato, On compact complex 3 -folds with lines, Japan. J. Math. (N.S.) 11 (1985), 1-58 Zbl0588.32032MR877456
  11. Karl Oeljeklaus, Julie Renaud, Compact complex threefolds of class L associated to polynomial automorphisms of 3 , Publ. Mat. 50 (2006), 401-411 Zbl1118.32017MR2273667
  12. Jasmin Raissy, Torus actions in the normalization problem, J. Geom. Anal. 20 (2010), 472-524 Zbl1203.37083MR2579518
  13. Jean-Pierre Rosay, Walter Rudin, Holomorphic maps from C n to C n , Trans. Amer. Math. Soc. 210 (1988), 47-86 Zbl0708.58003MR929658
  14. Matteo Ruggiero, Rigidification of holomorphic germs with non-invertible differential, Michigan Math. J. 60 (2011) Zbl1300.32018
  15. Shlomo Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809-824 Zbl0080.29902MR96853

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.