Méthodes de changement d’échelles en analyse complexe
- [1] Université P. Sabatier, Toulouse III, Lab. Émile Picard, Bât. 1R2, 31062 Toulouse Cedex 9, France.
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 3, page 427-483
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBerteloot, François. "Méthodes de changement d’échelles en analyse complexe." Annales de la faculté des sciences de Toulouse Mathématiques 15.3 (2006): 427-483. <http://eudml.org/doc/10004>.
@article{Berteloot2006,
abstract = {Nous mettons en perspective différentes méthodes de changement d’échelles et illustrons leur pertinence en mettant sur pieds des preuves simples et élémentaires de plusieurs théorèmes biens connus en analyse ou géométrie complexe. Les situations abordées sont variées et la plupart des théorèmes démontrés sont des classiques initialement obtenus entre la fin du xixe et la seconde moitié du xxe siècle.},
affiliation = {Université P. Sabatier, Toulouse III, Lab. Émile Picard, Bât. 1R2, 31062 Toulouse Cedex 9, France.},
author = {Berteloot, François},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {rescaling methods; Bloch principle; renormalizations of holomorphic disks; integer curves; Zalcman renormalization process; dilatation of coordinates; Pinchuk method of coordinate dilatation; Julia ensembles of rational fractions; hyperbolicity in the Kobayashi sense; biholomorphisms; Kobayashi metric compartment; Wong-Rosay theorem; Fefferman theorem on the differentiable extension of biholomorphisms; dilatation of holomorphic germs; normalization and linearization along orbits of holomorphic endomorphism; normalization of invertible germs},
language = {fre},
number = {3},
pages = {427-483},
publisher = {Université Paul Sabatier, Toulouse},
title = {Méthodes de changement d’échelles en analyse complexe},
url = {http://eudml.org/doc/10004},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Berteloot, François
TI - Méthodes de changement d’échelles en analyse complexe
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 3
SP - 427
EP - 483
AB - Nous mettons en perspective différentes méthodes de changement d’échelles et illustrons leur pertinence en mettant sur pieds des preuves simples et élémentaires de plusieurs théorèmes biens connus en analyse ou géométrie complexe. Les situations abordées sont variées et la plupart des théorèmes démontrés sont des classiques initialement obtenus entre la fin du xixe et la seconde moitié du xxe siècle.
LA - fre
KW - rescaling methods; Bloch principle; renormalizations of holomorphic disks; integer curves; Zalcman renormalization process; dilatation of coordinates; Pinchuk method of coordinate dilatation; Julia ensembles of rational fractions; hyperbolicity in the Kobayashi sense; biholomorphisms; Kobayashi metric compartment; Wong-Rosay theorem; Fefferman theorem on the differentiable extension of biholomorphisms; dilatation of holomorphic germs; normalization and linearization along orbits of holomorphic endomorphism; normalization of invertible germs
UR - http://eudml.org/doc/10004
ER -
References
top- V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1996), Editions MIR Moscou - Editions du Globe Paris Zbl0455.34001MR898218
- D. Bargmann, Simple proofs of some fundamental properties of the Julia set, Ergodic Theory Dynam. Systems 19 (1999), 553-558 Zbl0942.37033MR1695942
- E. Bedford, S. Pinchuk, Domains in with non-compact automorphism group, Math. USSR Sbornik 63 (1989), 141-151 Zbl0668.32029MR937803
- E. Bedford, S. Pinchuk, Convex domains with non-compact automorphism group, J. Geometric Anal. 1 (1991), 165-191 Zbl0733.32014MR1120679
- S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982), 685-691 Zbl0482.32007MR645338
- S. Bell, E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-289 Zbl0411.32010MR568937
- W. Bergweiler, Rescaling principles in function theory, Analysis and its applications (2001), 11-29, Allied Publ., New Delhi Zbl0993.30018MR1893221
- F. Berteloot, Attraction de disques analytiques et continuité Höldérienne d’applications holomorphes propres, Topics in Compl.Anal., Banach Center Publ. (1995), 91-98 Zbl0831.32012MR1341379
- F. Berteloot, Characterization of models in by their automorphism group, Int. J. Math. 5 (1994), 619-634 Zbl0817.32010MR1297410
- F. Berteloot, Principe de Bloch et estimations de la métrique de Kobayashi des domaines de , J. Geom. Anal. 13 (2003), 29-37 Zbl1040.32011MR1967034
- F. Berteloot, G. Cœuré, Domaines de , pseudoconvexes et de type fini ayant un groupe non-compact d’automorphismes, Ann. Inst. Fourier Grenoble 41 (1991), 77-86 Zbl0711.32016
- F. Berteloot, C. Dupont, Une caractérisation des exemples de Lattès par leur mesure de Green Zbl1079.37039
- F. Berteloot, J. Duval, Une démonstration directe de la densité des cycles répulsifs dans l’ensemble de Julia, Complex analysis and geometry 188 (2000), 221-222, Progr. Math., Basel Zbl1073.37522
- F. Berteloot, J. Duval, Sur l’hyperbolicité de certains complémentaires, L’Enseignement Mathématique 47 (2001), 253-267 Zbl1009.32015MR1876928
- F. Berteloot, J. J. Loeb, Une caractérisation géométrique des exemples de Lattès de , Bull. Soc. Math. Fr. 129 (2001), 175-188 Zbl0994.32026MR1871293
- F. Berteloot, V. Mayer, Rudiments de dynamique holomorphe, 7 (2001), Société Mathématique de France, EDP Sciences, Les Ulis Zbl1051.37019MR1973050
- J.-Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de , Acta Math. 182 (1999), 143-157 Zbl1144.37436MR1710180
- J.-Y. Briend, J. Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de , Publ. Math. Inst. Hautes Études Sci. 93 (2001), 145-159 Zbl1010.37004MR1863737
- R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
- J. Byun, H. Gaussier, K.-T. Kim, Weak-type normal families of holomorphic mappings in Banach spaces and characterization of the Hilbert ball by its automorphism group, J. Geom. Anal. 12 (2002), 581-599 Zbl1039.32003MR1916860
- D. Catlin, Estimates of Invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466 Zbl0661.32030MR978601
- M. Christ, irregularity of the -Neumann problem for worm domains, J. Amer. Math. Soc. 9 (1996), 1171-1185 Zbl0945.32022MR1370592
- B. Coupet, Precise regularity up to the boundary of proper holomorphic mappings, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 461-482 Zbl0812.32011MR1256077
- B. Coupet, H. Gaussier, A. Sukhov, Regularity of CR maps between convex hypersurfaces of finite type, Proc. Amer. Math. Soc. 127 (1999), 3191-3200 Zbl0951.32026MR1610940
- B. Coupet, S. Pinchuk, A. Sukhov, On boundary rigidity and regularity of holomorphic mappings, Int. J. Math. 7 (1996), 617-643 Zbl0952.32011MR1411304
- B. Coupet, A. Sukhov, On CR mappings between pseudoconvex hypersurfaces of finite type in , Duke Math. J. Vol. 88 (1997), 281-304 Zbl0895.32007MR1455521
- J.-P. Demailly, Variétés hyperboliques et équations différentielles algébriques, Gaz. Math. 73 (1997), 3-23 Zbl0901.32019MR1462789
- J.-P. Demailly, J. ElGoul, Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math. 122 (2000), 515-546 Zbl0966.32014MR1759887
- G. Dethloff, G. Schumacher, P. M. Wong, On the hyperbolicity of the complements of curves in algebraic surfaces, Duke Math. J. 78 (1995), 193-212 Zbl0847.32028MR1328756
- K. Diederich, J. E. Fornaess, Proper holomorphic maps onto pseudoconvex domains with real analytic boundary, Ann. Math. 110 (1979), 575-592 Zbl0394.32012MR554386
- K. Diederich, S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana. Math. J. 44 (1995), 1089-1126 Zbl0857.32015MR1386762
- T. C. Dinh, N. Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), 367-423 Zbl1033.37023MR1992375
- P. G. Dixon, J. Esterle, Michael’s problem and the Poincaré-Fatou-Bieberbach phenomenon, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 127-187 Zbl0608.32008MR854551
- A. M. Efimov, A generalization of the Wong-Rosay theorem for the unbounded case, Sb. Math. 186 (1995), 967-976 Zbl0865.32020MR1355455
- A. Eremenko, A Picard type theorem for holomorphic curves, Period. Math. Hungar. 38 (1999), 39-42 Zbl0940.32010MR1721476
- C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65 Zbl0289.32012MR350069
- J. E. Fornaess, N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-656 Zbl0679.32017MR1016439
- J. E. Fornaess, N. Sibony, Complex Dynamics in higher dimensions, Complex potential theory (Montréal, PQ, 1993) 439 (1994), 131-186, Kluwer Acad. Publ. Zbl0811.32019MR1332961
- J. E. Fornaess, N. Sibony, Complex Dynamics in higher dimensions II, Ann. of Math. Studies 137 (1995) Zbl0847.58059MR1369137
- F. Forstneric, An elementary proof of Fefferman’s theorem, Exposition. Math. 10 (1992), 135-149 Zbl0759.32018MR1164529
- F. Forstneric, J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 110 (1987), 239-252 Zbl0644.32013MR919504
- J.-P. Françoise, Géométrie analytique et systèmes dynamiques, Presses Universitaires de France, Paris (1995) MR1620294
- S. Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989), 109-149 Zbl0697.32016MR1007621
- H. Gaussier, Characterization of models for convex domains Zbl0889.32032MR1460422
- I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240 Zbl0305.32011MR372252
- M. Gromov, Foliated plateau problem, part II : harmonic maps of foliations, GAFA 1 (1991), 253-320 Zbl0768.53012MR1118731
- G. Henkin, An analytic polyhedron is not biholomorphic to a strictly pseudoconvex domain, Dokl. Akad. Nauk SSSR 210 (1973), 1026-1029 Zbl0288.32015MR328125
- A. Isaev, S. Krantz, Domains with non-compact automorphism group : a survey, Adv. Math. 146 (1999), 1-38 Zbl1040.32019MR1706680
- M. Jonsson, D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent. Math. 149 (2002), 409-430 Zbl1048.37047MR1918677
- K.-T. Kim, S. Krantz, Some new results on domains in complex space with non-compact automorphism group, J. Math. Anal. Appl. 281 (2003), 417-424 Zbl1035.32019MR1982663
- G. Kobayashi, Hyperbolic complex spaces, 318 (1998), Springer-Verlag, Berlin Zbl0917.32019MR1635983
- E. Landau, Uber di Blochste Konstante und zwei verwandte Weltkonstanten, Math. Z. 30 (1929), 608-634 MR1545082
- S. Lang, Introduction to complex hyperbolic manifolds, (1987), Springer Verlag Zbl0628.32001MR886677
- E. Ligocka, Some remarks on extension of biholomorphic mappings, Analytic functions (1980), 350-363, Springer, Berlin Zbl0458.32008MR577466
- A. J. Lohwater, Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I (1973) Zbl0275.30027MR338381
- S. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Sib. Math. J. 15 (1974), 909-917
- S. Pinchuk, The scaling method ans holomorphic mappings, Proc. Sympos. Pure Math. 52 (1991), 151-161 Zbl0744.32013
- S. Pinchuk, S. Khasanov, Asymptotically holomorphic functions and their applications, Math. USSR-Sb. 62 (1989), 541-550 Zbl0663.32006MR933702
- R. Range, Holomorphic functions and integral representations in several complex variables, 108 (1986), Springer-Verlag, New York Zbl0591.32002MR847923
- A. Ros, The Gauss map of minimal surfaces, Differential Geometry-Valencia (2001), 235-250 Zbl1028.53008MR1922054
- J.-P. Rosay, Sur une caractérisation de la boule parmi les domaines de par son groupe d’automorphismes, Ann. Inst. Fourier 29 (1979), 91-97 Zbl0402.32001MR558590
- J.-P. Rosay, W. Rudin, Holomorphic maps from to , Trans. Amer. Math. Soc. 310 (1988), 47-86 Zbl0708.58003MR929658
- D. Ruelle, Elements of differentiable dynamics and bifurcation theory, (1989), Academic Press, Inc., Boston, MA Zbl0684.58001MR982930
- W. Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), 314-316 Zbl0878.30020MR1435565
- N. Sibony, A class of hyperbolic manifolds, Ann. Math. Studies (1981), 357-372 Zbl0476.32033MR627768
- N. Sibony, Dynamique des applications rationnelles de , Panor. Synthèses (1999), 97-185, Soc. Math. France, Paris Zbl1020.37026MR1760844
- Y. T. Siu, S. K. Yeung, Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane, Invent. Math. 124 (1996), 573-618 Zbl0856.32017MR1369429
- B. Stensones, A proof of the Michael conjecture, (1998)
- B. Stensones, Fatou-Bieberbach domains with -smooth boundary, Ann. of Math. (2) 145 (1997), 365-377 Zbl0883.32020MR1441879
- S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809-824 Zbl0080.29902MR96853
- A. Sukhov, On boundary regularity of holomorphic mappings, Mat. Sb. 185 (1994), 131-142 Zbl0843.32016MR1317303
- S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28 Zbl0626.32019MR477138
- B. Wong, Characterization of the unit ball in by its automorphism group, Invent. Math. 41 (1977), 253-257 Zbl0385.32016MR492401
- L. Zalcman, Normal families : new perspectives, Bull. Amer. Math. Soc. 35 (1998), 215-230 Zbl1037.30021MR1624862
- L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817 Zbl0315.30036MR379852
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.