On geodesics of phyllotaxis
- [1] Université Grenoble Alpes, Institut Fourier (CNRS UMR 5582), 38000 Grenoble, France
Confluentes Mathematici (2014)
- Volume: 6, Issue: 1, page 3-27
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topBacher, Roland. "On geodesics of phyllotaxis." Confluentes Mathematici 6.1 (2014): 3-27. <http://eudml.org/doc/275496>.
@article{Bacher2014,
abstract = {Seeds of sunflowers are often modelled by $n\longmapsto \varphi _\theta (n)=\sqrt\{n\}e^\{2i\pi n\theta \}$ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance $2\pi \theta $ for $\theta $ the golden ratio. We associate to such a map $\varphi _\theta $ a geodesic path $\gamma _\theta : \mathbb\{R\}_\{>0\}\longrightarrow \mathrm\{PSL\}_2(\mathbb\{Z\})\backslash \mathbb\{H\}$ of the modular curve and use it for local descriptions of the image $\varphi _\theta (\mathbb\{N\})$ of the phyllotactic map $\varphi _\theta $.},
affiliation = {Université Grenoble Alpes, Institut Fourier (CNRS UMR 5582), 38000 Grenoble, France},
author = {Bacher, Roland},
journal = {Confluentes Mathematici},
keywords = {Lattice; hyperbolic geometry; phyllotaxis; sunflower-map; lattice},
language = {eng},
number = {1},
pages = {3-27},
publisher = {Institut Camille Jordan},
title = {On geodesics of phyllotaxis},
url = {http://eudml.org/doc/275496},
volume = {6},
year = {2014},
}
TY - JOUR
AU - Bacher, Roland
TI - On geodesics of phyllotaxis
JO - Confluentes Mathematici
PY - 2014
PB - Institut Camille Jordan
VL - 6
IS - 1
SP - 3
EP - 27
AB - Seeds of sunflowers are often modelled by $n\longmapsto \varphi _\theta (n)=\sqrt{n}e^{2i\pi n\theta }$ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance $2\pi \theta $ for $\theta $ the golden ratio. We associate to such a map $\varphi _\theta $ a geodesic path $\gamma _\theta : \mathbb{R}_{>0}\longrightarrow \mathrm{PSL}_2(\mathbb{Z})\backslash \mathbb{H}$ of the modular curve and use it for local descriptions of the image $\varphi _\theta (\mathbb{N})$ of the phyllotactic map $\varphi _\theta $.
LA - eng
KW - Lattice; hyperbolic geometry; phyllotaxis; sunflower-map; lattice
UR - http://eudml.org/doc/275496
ER -
References
top- J.W. Anderson. Hyperbolic Geometry, Springer, 2005. Zbl1077.51008MR2161463
- L. and A. Bravais. Essai sur la disposition des feuilles curvisériées, Ann. Sci. Naturelles (2), 7:42–110, 1837.
- H.S.M. Coxeter. The role of intermediate convergents in Tait’s explanation for phyllotaxis, J. of Alg., 20:167–175, 1972. Zbl0225.10033MR295187
- G.H. Hardy, E.M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, 1960 (fourth edition). Zbl0086.25803
- G. van Iterson. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Gustav Fischer, Jena, 1907. Zbl38.0984.07
- R.V. Jean, D. Barabé (editors). Symmetry in Plants, Series in Mathematical Biology and Medecine, vol. 4, World Scientific, 1998. Zbl0926.92024
- A. Ya. Khinchin. Continued fractions, The University of Chicago Press, Chicago, 1964. Zbl0117.28601MR161833
- L.S. Levitov. Energetic Approach to Phyllotaxis, Europhys. Lett., 6:533–539, 1991.
- Mathoverflow: http://mathoverflow.net/questions/3307/can-a-discrete-set-of-the-plane-of-uniform-density-intersect-all-large-triangles.
- R.V. Jean, D. Barabé (editors). Symmetry in plants, World Sci. Publishing, River Edge, NJ, 1998. Zbl0926.92024
- F. Rothen, A.-J. Koch. Phyllotaxis, or the properties of spiral lattices. I Shape invariance under compression, J. Phys. France, 50:633–657, 1989. MR997212
- J-F. Sadoc, J. Charvolin, N. Rivier. Phyllotaxis: a non conventional solution to packing efficiency in situations with radial symmetry, Acta Cryst. A, 68:470–483, 2012.
- C. Series. The Geometry of Markoff Numbers, Math. Int., 7(3):20–29, 1985. Zbl0566.10024MR795536
- J-P. Serre. Cours d’arithmétique, Presses Universitaires de France, 1970. Zbl0376.12001MR255476
- D.W. Thompson. On Growth and Form, Dover reprint (1992) of second ed. (1942) (first ed. 1917). Zbl0063.07372
- H. Vogel. A better way to construct the sunflower head, Math. Biosc., 44:179–189, 1979.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.