On geodesics of phyllotaxis

Roland Bacher[1]

  • [1] Université Grenoble Alpes, Institut Fourier (CNRS UMR 5582), 38000 Grenoble, France

Confluentes Mathematici (2014)

  • Volume: 6, Issue: 1, page 3-27
  • ISSN: 1793-7434

Abstract

top
Seeds of sunflowers are often modelled by n ϕ θ ( n ) = n e 2 i π n θ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance 2 π θ for θ the golden ratio. We associate to such a map ϕ θ a geodesic path γ θ : > 0 PSL 2 ( ) of the modular curve and use it for local descriptions of the image ϕ θ ( ) of the phyllotactic map ϕ θ .

How to cite

top

Bacher, Roland. "On geodesics of phyllotaxis." Confluentes Mathematici 6.1 (2014): 3-27. <http://eudml.org/doc/275496>.

@article{Bacher2014,
abstract = {Seeds of sunflowers are often modelled by $n\longmapsto \varphi _\theta (n)=\sqrt\{n\}e^\{2i\pi n\theta \}$ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance $2\pi \theta $ for $\theta $ the golden ratio. We associate to such a map $\varphi _\theta $ a geodesic path $\gamma _\theta : \mathbb\{R\}_\{&gt;0\}\longrightarrow \mathrm\{PSL\}_2(\mathbb\{Z\})\backslash \mathbb\{H\}$ of the modular curve and use it for local descriptions of the image $\varphi _\theta (\mathbb\{N\})$ of the phyllotactic map $\varphi _\theta $.},
affiliation = {Université Grenoble Alpes, Institut Fourier (CNRS UMR 5582), 38000 Grenoble, France},
author = {Bacher, Roland},
journal = {Confluentes Mathematici},
keywords = {Lattice; hyperbolic geometry; phyllotaxis; sunflower-map; lattice},
language = {eng},
number = {1},
pages = {3-27},
publisher = {Institut Camille Jordan},
title = {On geodesics of phyllotaxis},
url = {http://eudml.org/doc/275496},
volume = {6},
year = {2014},
}

TY - JOUR
AU - Bacher, Roland
TI - On geodesics of phyllotaxis
JO - Confluentes Mathematici
PY - 2014
PB - Institut Camille Jordan
VL - 6
IS - 1
SP - 3
EP - 27
AB - Seeds of sunflowers are often modelled by $n\longmapsto \varphi _\theta (n)=\sqrt{n}e^{2i\pi n\theta }$ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance $2\pi \theta $ for $\theta $ the golden ratio. We associate to such a map $\varphi _\theta $ a geodesic path $\gamma _\theta : \mathbb{R}_{&gt;0}\longrightarrow \mathrm{PSL}_2(\mathbb{Z})\backslash \mathbb{H}$ of the modular curve and use it for local descriptions of the image $\varphi _\theta (\mathbb{N})$ of the phyllotactic map $\varphi _\theta $.
LA - eng
KW - Lattice; hyperbolic geometry; phyllotaxis; sunflower-map; lattice
UR - http://eudml.org/doc/275496
ER -

References

top
  1. J.W. Anderson. Hyperbolic Geometry, Springer, 2005. Zbl1077.51008MR2161463
  2. L. and A. Bravais. Essai sur la disposition des feuilles curvisériées, Ann. Sci. Naturelles (2), 7:42–110, 1837. 
  3. H.S.M. Coxeter. The role of intermediate convergents in Tait’s explanation for phyllotaxis, J. of Alg., 20:167–175, 1972. Zbl0225.10033MR295187
  4. G.H. Hardy, E.M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, 1960 (fourth edition). Zbl0086.25803
  5. G. van Iterson. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Gustav Fischer, Jena, 1907. Zbl38.0984.07
  6. R.V. Jean, D. Barabé (editors). Symmetry in Plants, Series in Mathematical Biology and Medecine, vol. 4, World Scientific, 1998. Zbl0926.92024
  7. A. Ya. Khinchin. Continued fractions, The University of Chicago Press, Chicago, 1964. Zbl0117.28601MR161833
  8. L.S. Levitov. Energetic Approach to Phyllotaxis, Europhys. Lett., 6:533–539, 1991. 
  9. Mathoverflow: http://mathoverflow.net/questions/3307/can-a-discrete-set-of-the-plane-of-uniform-density-intersect-all-large-triangles. 
  10. R.V. Jean, D. Barabé (editors). Symmetry in plants, World Sci. Publishing, River Edge, NJ, 1998. Zbl0926.92024
  11. F. Rothen, A.-J. Koch. Phyllotaxis, or the properties of spiral lattices. I Shape invariance under compression, J. Phys. France, 50:633–657, 1989. MR997212
  12. J-F. Sadoc, J. Charvolin, N. Rivier. Phyllotaxis: a non conventional solution to packing efficiency in situations with radial symmetry, Acta Cryst. A, 68:470–483, 2012. 
  13. C. Series. The Geometry of Markoff Numbers, Math. Int., 7(3):20–29, 1985. Zbl0566.10024MR795536
  14. J-P. Serre. Cours d’arithmétique, Presses Universitaires de France, 1970. Zbl0376.12001MR255476
  15. D.W. Thompson. On Growth and Form, Dover reprint (1992) of second ed. (1942) (first ed. 1917). Zbl0063.07372
  16. H. Vogel. A better way to construct the sunflower head, Math. Biosc., 44:179–189, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.