Displaying similar documents to “On geodesics of phyllotaxis”

Some remarks on the interpolation spaces A θ , A θ

Mohammad Daher (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( A 0 , A 1 ) be a regular interpolation couple. Under several different assumptions on a fixed A β , we show that A θ = A θ for every θ ( 0 , 1 ) . We also deal with assumptions on A ¯ β , the closure of A β in the dual of ( A 0 * , A 1 * ) β .

The Massera-Schäffer problem for a first order linear differential equation

Nina A. Chernyavskaya, Leonid A. Shuster (2022)

Czechoslovak Mathematical Journal

Similarity:

We consider the Massera-Schäffer problem for the equation - y ' ( x ) + q ( x ) y ( x ) = f ( x ) , x , where f L p loc ( ) , p [ 1 , ) and 0 q L 1 loc ( ) . By a solution of the problem we mean any function y , absolutely continuous and satisfying the above equation almost everywhere in . Let positive and continuous functions μ ( x ) and θ ( x ) for x be given. Let us introduce the spaces L p ( , μ ) = f L p loc ( ) : f L p ( , μ ) p = - | μ ( x ) f ( x ) | p d x < , L p ( , θ ) = f L p loc ( ) : f L p ( , θ ) p = - | θ ( x ) f ( x ) | p d x < . We obtain requirements to the functions μ , θ and q under which (1) for every function f L p ( , θ ) there exists a unique solution y L p ( , μ ) of the above equation; (2) there is an absolute constant...

Linearly-invariant families and generalized Meixner–Pollaczek polynomials

Iwona Naraniecka, Jan Szynal, Anna Tatarczak (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The extremal functions  f 0 ( z )   realizing the maxima of some functionals (e.g. max | a 3 | , and  max a r g f ' ( z ) ) within the so-called universal linearly invariant family U α (in the sense of Pommerenke [10]) have such a form that f 0 ' ( z )   looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials P n λ ( x ; θ , ψ ) of a real variable x as coefficients of G λ ( x ; θ , ψ ; z ) = 1 ( 1 - z e i θ ) λ - i x ( 1 - z e i ψ ) λ + i x = n = 0 P n λ ( x ; θ , ψ ) z n , | z | < 1 , where the parameters λ , θ , ψ satisfy the conditions:...

Singularities of 2 Θ -divisors in the jacobian

Christian Pauly, Emma Previato (2001)

Bulletin de la Société Mathématique de France

Similarity:

We consider the linear system | 2 Θ 0 | of second order theta functions over the Jacobian J C of a non-hyperelliptic curve C . A result by J.Fay says that a divisor D | 2 Θ 0 | contains the origin 𝒪 J C with multiplicity 4 if and only if D contains the surface C - C = { 𝒪 ( p - q ) p , q C } J C . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing 𝒪 with multiplicity 6 , divisors containing the fourfold C 2 - C 2 = { 𝒪 ( p + q - r - s ) p , q , r , s C } , and divisors singular along C - C , using...

Comments on the fractional parts of Pisot numbers

Toufik Zaïmi, Mounia Selatnia, Hanifa Zekraoui (2015)

Archivum Mathematicum

Similarity:

Let L ( θ , λ ) be the set of limit points of the fractional parts { λ θ n } , n = 0 , 1 , 2 , , where θ is a Pisot number and λ ( θ ) . Using a description of L ( θ , λ ) , due to Dubickas, we show that there is a sequence ( λ n ) n 0 of elements of ( θ ) such that Card ( L ( θ , λ n ) ) < Card ( L ( θ , λ n + 1 ) ) , n 0 . Also, we prove that the fractional parts of Pisot numbers, with a fixed degree greater than 1, are dense in the unit interval.

On the cardinality of Urysohn spaces and weakly H -closed spaces

Fortunata Aurora Basile, Nathan Carlson (2019)

Mathematica Bohemica

Similarity:

We introduce the cardinal invariant θ - a L ' ( X ) , related to θ - a L ( X ) , and show that if X is Urysohn, then | X | 2 θ - a L ' ( X ) χ ( X ) . As θ - a L ' ( X ) a L ( X ) , this represents an improvement of the Bella-Cammaroto inequality. We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly H -closed spaces, related to H -closed spaces.

Compatibility of the theta correspondence with the Whittaker functors

Vincent Lafforgue, Sergey Lysenko (2011)

Bulletin de la Société Mathématique de France

Similarity:

We prove that the global geometric theta-lifting functor for the dual pair ( H , G ) is compatible with the Whittaker functors, where ( H , G ) is one of the pairs ( S 𝕆 2 n , 𝕊 p 2 n ) , ( 𝕊 p 2 n , S 𝕆 2 n + 2 ) or ( 𝔾 L n , 𝔾 L n + 1 ) . That is, the composition of the theta-lifting functor from H to G with the Whittaker functor for G is isomorphic to the Whittaker functor for H .

The reduced ideals of a special order in a pure cubic number field

Abdelmalek Azizi, Jamal Benamara, Moulay Chrif Ismaili, Mohammed Talbi (2020)

Archivum Mathematicum

Similarity:

Let K = ( θ ) be a pure cubic field, with θ 3 = D , where D is a cube-free integer. We will determine the reduced ideals of the order 𝒪 = [ θ ] of K which coincides with the maximal order of K in the case where D is square-free and ¬ ± 1 ( mod 9 ) .

The CR Yamabe conjecture the case n = 1

Najoua Gamara (2001)

Journal of the European Mathematical Society

Similarity:

Let ( M , θ ) be a compact CR manifold of dimension 2 n + 1 with a contact form θ , and L = ( 2 + 2 / n ) Δ b + R its associated CR conformal laplacien. The CR Yamabe conjecture states that there is a contact form θ ˜ on M conformal to θ which has a constant Webster curvature. This problem is equivalent to the existence of a function u such that L u = u 1 + 2 / n , u > 0 on M . D. Jerison and J. M. Lee solved the CR Yamabe problem in the case where n 2 and ( M , θ ) is not locally CR equivalent to the sphere S 2 n + 1 of 𝐂 n . In a join work with R. Yacoub, the CR Yamabe...

The local index density of the perturbed de Rham complex

Jesús Álvarez López, Peter B. Gilkey (2021)

Czechoslovak Mathematical Journal

Similarity:

A perturbation of the de Rham complex was introduced by Witten for an exact 1-form Θ and later extended by Novikov for a closed 1-form on a Riemannian manifold M . We use invariance theory to show that the perturbed index density is independent of Θ ; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence...

Riemannian geometries on spaces of plane curves

Peter W. Michor, David Mumford (2006)

Journal of the European Mathematical Society

Similarity:

We study some Riemannian metrics on the space of smooth regular curves in the plane, viewed as the orbit space of maps from S 1 to the plane modulo the group of diffeomorphisms of S 1 , acting as reparametrizations. In particular we investigate the metric, for a constant A > 0 , G c A ( h , k ) : = S 1 ( 1 + A κ c ( θ ) 2 ) h ( θ ) , k ( θ ) | c ' ( θ ) | d θ where κ c is the curvature of the curve c and h , k are normal vector fields to c . The term A κ 2 is a sort of geometric Tikhonov regularization because, for A = 0 , the geodesic distance between any two distinct curves is 0, while...

Geometric theta-lifting for the dual pair 𝕊𝕆 2 m , 𝕊 p 2 n

Sergey Lysenko (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let X be a smooth projective curve over an algebraically closed field of characteristic  &gt; 2 . Consider the dual pair H = SO 2 m , G = Sp 2 n over X with H split. Write Bun G and Bun H for the stacks of G -torsors and H -torsors on X . The theta-kernel Aut G , H on Bun G × Bun H yields theta-lifting functors F G : D ( Bun H ) D ( Bun G ) and F H : D ( Bun G ) D ( Bun H ) between the corresponding derived categories. We describe the relation of these functors with Hecke operators. In two particular cases these functors realize the geometric Langlands functoriality for the above pair (in the non...

Factorizations of normality via generalizations of β -normality

Ananga Kumar Das, Pratibha Bhat, Ria Gupta (2016)

Mathematica Bohemica

Similarity:

The notion of β -normality was introduced and studied by Arhangel’skii, Ludwig in 2001. Recently, almost β -normal spaces, which is a simultaneous generalization of β -normal and almost normal spaces, were introduced by Das, Bhat and Tartir. We introduce a new generalization of normality, namely weak β -normality, in terms of θ -closed sets, which turns out to be a simultaneous generalization of β -normality and θ -normality. A space X is said to be weakly β -normal (w β -normal ) if for every...