The modular class of a Poisson map
Raquel Caseiro[1]; Rui Loja Fernandes[2]
- [1] Universidade de Coimbra CMUC, Department of Mathematics 3001-454 Coimbra, (Portugal)
- [2] University of Illinois at Urbana-Champaign Department of Mathematics 1409 W. Green Street Urbana, IL 61801 (USA)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 4, page 1285-1329
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCaseiro, Raquel, and Fernandes, Rui Loja. "The modular class of a Poisson map." Annales de l’institut Fourier 63.4 (2013): 1285-1329. <http://eudml.org/doc/275504>.
@article{Caseiro2013,
abstract = {We introduce the modular class of a Poisson map. We look at several examples and we use the modular classes of Poisson maps to study the behavior of the modular class of a Poisson manifold under different kinds of reduction. We also discuss their symplectic groupoid version, which lives in groupoid cohomology.},
affiliation = {Universidade de Coimbra CMUC, Department of Mathematics 3001-454 Coimbra, (Portugal); University of Illinois at Urbana-Champaign Department of Mathematics 1409 W. Green Street Urbana, IL 61801 (USA)},
author = {Caseiro, Raquel, Fernandes, Rui Loja},
journal = {Annales de l’institut Fourier},
keywords = {Poisson manifold; Poisson map; modular class},
language = {eng},
number = {4},
pages = {1285-1329},
publisher = {Association des Annales de l’institut Fourier},
title = {The modular class of a Poisson map},
url = {http://eudml.org/doc/275504},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Caseiro, Raquel
AU - Fernandes, Rui Loja
TI - The modular class of a Poisson map
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1285
EP - 1329
AB - We introduce the modular class of a Poisson map. We look at several examples and we use the modular classes of Poisson maps to study the behavior of the modular class of a Poisson manifold under different kinds of reduction. We also discuss their symplectic groupoid version, which lives in groupoid cohomology.
LA - eng
KW - Poisson manifold; Poisson map; modular class
UR - http://eudml.org/doc/275504
ER -
References
top- H. Bursztyn, A brief introduction to Dirac manifolds Zbl1293.53001
- Alberto S. Cattaneo, Giovanni Felder, Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, Lett. Math. Phys. 69 (2004), 157-175 Zbl1065.53063MR2104442
- Marius Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721 Zbl1041.58007MR2016690
- Marius Crainic, Rui Loja Fernandes, Integrability of Poisson brackets, J. Differential Geom. 66 (2004), 71-137 Zbl1066.53131MR2128714
- Marius Crainic, Rui Loja Fernandes, Stability of symplectic leaves, Invent. Math. 180 (2010), 481-533 Zbl1197.53108MR2609248
- Marius Crainic, Rui Loja Fernandes, Lectures on integrability of Lie brackets, Lectures on Poisson geometry 17 (2011), 1-107, Geom. Topol. Publ., Coventry Zbl1227.22005MR2795150
- Sam Evens, Jiang-Hua Lu, Alan Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417-436 Zbl0968.58014MR1726784
- Rui Loja Fernandes, Connections in Poisson geometry. I. Holonomy and invariants, J. Differential Geom. 54 (2000), 303-365 Zbl1036.53060MR1818181
- Rui Loja Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119-179 Zbl1007.22007MR1929305
- Rui Loja Fernandes, The symplectization functor, XV International Workshop on Geometry and Physics 11 (2007), 67-82, R. Soc. Mat. Esp., Madrid Zbl1229.53086MR2504211
- Rui Loja Fernandes, David Iglesias Ponte, Integrability of Poisson-Lie group actions, Lett. Math. Phys. 90 (2009), 137-159 Zbl1183.53075MR2565037
- Rui Loja Fernandes, Juan-Pablo Ortega, Tudor S. Ratiu, The momentum map in Poisson geometry, Amer. J. Math. 131 (2009), 1261-1310 Zbl1180.53083MR2555841
- Viktor L. Ginzburg, Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math. 10 (1999), 977-1010 Zbl1061.53059MR1739368
- Viktor L. Ginzburg, Alex Golubev, Holonomy on Poisson manifolds and the modular class, Israel J. Math. 122 (2001), 221-242 Zbl0991.53055MR1826501
- Viktor L. Ginzburg, Jiang-Hua Lu, Poisson cohomology of Morita-equivalent Poisson manifolds, Internat. Math. Res. Notices (1992), 199-205 Zbl0783.58026MR1191570
- Janusz Grabowski, Giuseppe Marmo, Peter W. Michor, Homology and modular classes of Lie algebroids, Ann. Inst. Fourier (Grenoble) 56 (2006), 69-83 Zbl1141.17018MR2228680
- Yvette Kosmann-Schwarzbach, C. Laurent-Gengoux, Alan Weinstein, Modular classes of Lie algebroid morphisms, Transform. Groups 13 (2008), 727-755 Zbl1167.53068MR2452613
- Yvette Kosmann-Schwarzbach, Alan Weinstein, Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris 341 (2005), 509-514 Zbl1080.22001MR2180819
- Jean-Louis Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque (1985), 257-271 Zbl0615.58029MR837203
- André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300 Zbl0405.53024MR501133
- Jiang-Hua Lu, Multiplicative and affine Poisson structures on Lie groups, (1990), ProQuest LLC, Ann Arbor, MI MR2685337
- Jiang-Hua Lu, Momentum mappings and reduction of Poisson actions, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989) 20 (1991), 209-226, Springer, New York Zbl0735.58004MR1104930
- I. Moerdijk, J. Mrčun, On the integrability of Lie subalgebroids, Adv. Math. 204 (2006), 101-115 Zbl1131.58015MR2233128
- Olga Radko, A classification of topologically stable Poisson structures on a compact oriented surface, J. Symplectic Geom. 1 (2002), 523-542 Zbl1093.53087MR1959058
- Alan Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705-727 Zbl0642.58025MR959095
- Alan Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598
- Ping Xu, Dirac submanifolds and Poisson involutions, Ann. Sci. École Norm. Sup. (4) 36 (2003), 403-430 Zbl1047.53052MR1977824
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.