Homology and modular classes of Lie algebroids
Janusz Grabowski[1]; Giuseppe Marmo[2]; Peter W. Michor[3]
- [1] Polish Academy of Sciences Mathematical Institute Śniadeckich 8, P.O. Box 21 00-956 Warszawa (Poland)
- [2] Universitá di Napoli Federico II and INFN, Dipartimento di Scienze Fisice Sezione di Napoli, via Cintia 80126 Napoli (Italy)
- [3] Universität Wien Institut für Mathematik Nordbergstrasse 15 A-1090 Wien (Austria) and Erwin Schrödinger Institut für Mathematische Physik Boltzmanngasse 9 A-1090 Wien (Austria)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 69-83
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGrabowski, Janusz, Marmo, Giuseppe, and Michor, Peter W.. "Homology and modular classes of Lie algebroids." Annales de l’institut Fourier 56.1 (2006): 69-83. <http://eudml.org/doc/10143>.
@article{Grabowski2006,
abstract = {For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.},
affiliation = {Polish Academy of Sciences Mathematical Institute Śniadeckich 8, P.O. Box 21 00-956 Warszawa (Poland); Universitá di Napoli Federico II and INFN, Dipartimento di Scienze Fisice Sezione di Napoli, via Cintia 80126 Napoli (Italy); Universität Wien Institut für Mathematik Nordbergstrasse 15 A-1090 Wien (Austria) and Erwin Schrödinger Institut für Mathematische Physik Boltzmanngasse 9 A-1090 Wien (Austria)},
author = {Grabowski, Janusz, Marmo, Giuseppe, Michor, Peter W.},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebroid; de Rham cohomology; Poincaré duality; divergence; homology of Lie algebroid; connection; modular class},
language = {eng},
number = {1},
pages = {69-83},
publisher = {Association des Annales de l’institut Fourier},
title = {Homology and modular classes of Lie algebroids},
url = {http://eudml.org/doc/10143},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Grabowski, Janusz
AU - Marmo, Giuseppe
AU - Michor, Peter W.
TI - Homology and modular classes of Lie algebroids
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 69
EP - 83
AB - For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.
LA - eng
KW - Lie algebroid; de Rham cohomology; Poincaré duality; divergence; homology of Lie algebroid; connection; modular class
UR - http://eudml.org/doc/10143
ER -
References
top- M. Crainic, Chern characters via connections up to homotopy
- G. De Rham, Variétés différentiables, (1955), Hermann, Paris Zbl0065.32401
- S. Evens, J.-H. Lu, A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., Oxford Ser. 2 50 (1999), 417-436 Zbl0968.58014MR1726784
- R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2000), 119-179 Zbl1007.22007MR1929305
- J. Grabowski, Quasi-derivations and QD-algebroids, Rep. Math. Phys. 52 (2003), 445-451 Zbl1051.53067MR2029773
- J. Grabowski, G. Marmo, Jacobi structures revisited, J. Phys. A: Math. Gen. 34 (2001), 10975-10990 Zbl0998.53054MR1872975
- J. Grabowski, G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen. 36 (2003), 161-181 Zbl1039.53090MR1959019
- J. Hübschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440 Zbl0973.17027MR1625610
- D. Iglesias, J.C. Marrero, Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys. 40 (2001), 176-199 Zbl1001.17025MR1862087
- Y. Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras, Poisson Geometry 51 (2000), 109-129, GrabowskiJ.J., Warszawa Zbl1018.17020MR1764439
- Y. Kosmann-Schwarzbach, K. Mackenzie, Differential operators and actions of Lie algebroids, Contemp. Math. 315 (2002), 213-233 Zbl1040.17020MR1958838
- Y. Kosmann-Schwarzbach, J. Monterde, Divergence operators and odd Poisson brackets, Ann. Inst. Fourier 52 (2002), 419-456 Zbl1054.53094MR1906481
- Jean-Louis Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan hors série (1985), 257-271, Lyon, 1984 Zbl0615.58029MR837203
- K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, (1987), Cambridge University Press Zbl0683.53029MR896907
- E. Nelson, Tensor analysis, (1967), Princeton University Press Zbl0152.39001
- A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598
- E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661-692 Zbl0499.53056MR683171
- P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560 Zbl0941.17016MR1675117
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.