Homology and modular classes of Lie algebroids

Janusz Grabowski[1]; Giuseppe Marmo[2]; Peter W. Michor[3]

  • [1] Polish Academy of Sciences Mathematical Institute Śniadeckich 8, P.O. Box 21 00-956 Warszawa (Poland)
  • [2] Universitá di Napoli Federico II and INFN, Dipartimento di Scienze Fisice Sezione di Napoli, via Cintia 80126 Napoli (Italy)
  • [3] Universität Wien Institut für Mathematik Nordbergstrasse 15 A-1090 Wien (Austria) and Erwin Schrödinger Institut für Mathematische Physik Boltzmanngasse 9 A-1090 Wien (Austria)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 69-83
  • ISSN: 0373-0956

Abstract

top
For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.

How to cite

top

Grabowski, Janusz, Marmo, Giuseppe, and Michor, Peter W.. "Homology and modular classes of Lie algebroids." Annales de l’institut Fourier 56.1 (2006): 69-83. <http://eudml.org/doc/10143>.

@article{Grabowski2006,
abstract = {For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.},
affiliation = {Polish Academy of Sciences Mathematical Institute Śniadeckich 8, P.O. Box 21 00-956 Warszawa (Poland); Universitá di Napoli Federico II and INFN, Dipartimento di Scienze Fisice Sezione di Napoli, via Cintia 80126 Napoli (Italy); Universität Wien Institut für Mathematik Nordbergstrasse 15 A-1090 Wien (Austria) and Erwin Schrödinger Institut für Mathematische Physik Boltzmanngasse 9 A-1090 Wien (Austria)},
author = {Grabowski, Janusz, Marmo, Giuseppe, Michor, Peter W.},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebroid; de Rham cohomology; Poincaré duality; divergence; homology of Lie algebroid; connection; modular class},
language = {eng},
number = {1},
pages = {69-83},
publisher = {Association des Annales de l’institut Fourier},
title = {Homology and modular classes of Lie algebroids},
url = {http://eudml.org/doc/10143},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Grabowski, Janusz
AU - Marmo, Giuseppe
AU - Michor, Peter W.
TI - Homology and modular classes of Lie algebroids
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 69
EP - 83
AB - For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.
LA - eng
KW - Lie algebroid; de Rham cohomology; Poincaré duality; divergence; homology of Lie algebroid; connection; modular class
UR - http://eudml.org/doc/10143
ER -

References

top
  1. M. Crainic, Chern characters via connections up to homotopy 
  2. G. De Rham, Variétés différentiables, (1955), Hermann, Paris Zbl0065.32401
  3. S. Evens, J.-H. Lu, A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., Oxford Ser. 2 50 (1999), 417-436 Zbl0968.58014MR1726784
  4. R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2000), 119-179 Zbl1007.22007MR1929305
  5. J. Grabowski, Quasi-derivations and QD-algebroids, Rep. Math. Phys. 52 (2003), 445-451 Zbl1051.53067MR2029773
  6. J. Grabowski, G. Marmo, Jacobi structures revisited, J. Phys. A: Math. Gen. 34 (2001), 10975-10990 Zbl0998.53054MR1872975
  7. J. Grabowski, G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen. 36 (2003), 161-181 Zbl1039.53090MR1959019
  8. J. Hübschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440 Zbl0973.17027MR1625610
  9. D. Iglesias, J.C. Marrero, Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys. 40 (2001), 176-199 Zbl1001.17025MR1862087
  10. Y. Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras, Poisson Geometry 51 (2000), 109-129, GrabowskiJ.J., Warszawa Zbl1018.17020MR1764439
  11. Y. Kosmann-Schwarzbach, K. Mackenzie, Differential operators and actions of Lie algebroids, Contemp. Math. 315 (2002), 213-233 Zbl1040.17020MR1958838
  12. Y. Kosmann-Schwarzbach, J. Monterde, Divergence operators and odd Poisson brackets, Ann. Inst. Fourier 52 (2002), 419-456 Zbl1054.53094MR1906481
  13. Jean-Louis Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan hors série (1985), 257-271, Lyon, 1984 Zbl0615.58029MR837203
  14. K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, (1987), Cambridge University Press Zbl0683.53029MR896907
  15. E. Nelson, Tensor analysis, (1967), Princeton University Press Zbl0152.39001
  16. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598
  17. E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661-692 Zbl0499.53056MR683171
  18. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560 Zbl0941.17016MR1675117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.