On the moduli b-divisors of lc-trivial fibrations
Osamu Fujino[1]; Yoshinori Gongyo[2]
- [1] Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
- [2] Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan. Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 4, page 1721-1735
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004), 229-255 Zbl1097.14029MR2153078
- F. Ambro, The moduli b-divisor of an lc-trivial fibration, Compos. Math. 141 (2005), 385-403 Zbl1094.14025MR2134273
- C. Birkar, Y. Chen, Images of manifolds with semi-ample anti-canonical divisor Zbl06560854
- A. Corti, -fold flips after Shokurov, Flips for -folds and -folds 35 (2007), 18-48, Oxford Univ. Press, Oxford Zbl1286.14022MR2359340
- P. Deligne, Théorie de Hodge. II, (French) Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57 Zbl0219.14007MR498551
- E. Floris, Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN 2014 (2014), 1645-1492 Zbl1325.14018MR3180598
- O. Fujino, Higher direct images of log canonical divisors and positivity theorems Zbl1072.14019
- O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), 513-532 Zbl0986.14007MR1756108
- O. Fujino, A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J. 172 (2003), 129-171 Zbl1072.14040MR2019523
- O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), 453-479 Zbl1072.14019MR2106473
- O. Fujino, What is log terminal?, Flips for -folds and -folds 35 (2007), 49-62, Oxford Univ. Press, Oxford Zbl1286.14024MR2359341
- O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), 727-789 Zbl1234.14013MR2832805
- O. Fujino, On Kawamata’s theorem, Classification of algebraic varieties (2011), 305-315, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich Zbl1213.14015MR2779478
- O. Fujino, Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 25-30 Zbl1230.14016MR2802603
- O. Fujino, Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula, Algebra Number Theory 6 (2012), 797-823 Zbl1251.14005MR2966720
- O. Fujino, Some remarks on the minimal model program for log canonical pairs, (to appear in Kodaira Centennial issue of Journal of Mathematical Sciences, the University of Tokyo)
- O. Fujino, T. Fujisawa, Variations of mixed Hodge structure and semi-positivity theorems Zbl1305.14004
- N. M. Katz, The regularity theorem in algebraic geometry, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (1971), 437-443, Gauthier-Villars, Paris Zbl0235.14006MR472822
- Y. Kawamata, Subadjunction of log canonical divisors for a subvariety of codimension , Birational algebraic geometry (Baltimore, MD, 1996) (1997), 79-88, Amer. Math. Soc., Providence, RI Zbl0901.14004MR1462926
- G. Kempf, F. Knudsen, D. Mumford, Saint-Donat B., Toroidal embeddings. I, 339 (1973), Springer-Verlag, Berlin-New York Zbl0271.14017MR335518
- J. Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for -folds and -folds 35 (2007), 134-162, Oxford Univ. Press, Oxford Zbl1286.14027MR2359346
- Yu. G. Prokhorov, V. V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), 151-199 Zbl1159.14020MR2448282
- M.-H. Saito, Y. Shimizu, S. Usui, Variation of mixed Hodge structure and the Torelli problem, Algebraic geometry, Sendai, 1985 (1987), 649-693, North-Holland, Amsterdam Zbl0643.14005MR946252