Positivity on subvarieties and vanishing of higher cohomology
Alex Küronya[1]
- [1] Budapest University of Technology and Economics, Department of Algebra, P.O. Box 91, H-1521 Budapest, Hungary Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstraße 1, D-79104 Freiburg, Germany
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 5, page 1717-1737
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKüronya, Alex. "Positivity on subvarieties and vanishing of higher cohomology." Annales de l’institut Fourier 63.5 (2013): 1717-1737. <http://eudml.org/doc/275516>.
@article{Küronya2013,
abstract = {We study the relationship between positivity of restriction of line bundles to general complete intersections and vanishing of their higher cohomology. As a result, we extend classical vanishing theorems of Kawamata–Viehweg and Fujita to possibly non-nef divisors.},
affiliation = {Budapest University of Technology and Economics, Department of Algebra, P.O. Box 91, H-1521 Budapest, Hungary Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstraße 1, D-79104 Freiburg, Germany},
author = {Küronya, Alex},
journal = {Annales de l’institut Fourier},
keywords = {vanishing theorems; generic restrictions of line bundles; q-ampleness; vanishing of higher cohomology; partial positivity},
language = {eng},
number = {5},
pages = {1717-1737},
publisher = {Association des Annales de l’institut Fourier},
title = {Positivity on subvarieties and vanishing of higher cohomology},
url = {http://eudml.org/doc/275516},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Küronya, Alex
TI - Positivity on subvarieties and vanishing of higher cohomology
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1717
EP - 1737
AB - We study the relationship between positivity of restriction of line bundles to general complete intersections and vanishing of their higher cohomology. As a result, we extend classical vanishing theorems of Kawamata–Viehweg and Fujita to possibly non-nef divisors.
LA - eng
KW - vanishing theorems; generic restrictions of line bundles; q-ampleness; vanishing of higher cohomology; partial positivity
UR - http://eudml.org/doc/275516
ER -
References
top- Aldo Andreotti, Hans Grauert, Théorèmes de finitude por la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259 Zbl0106.05501MR150342
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Zbl1267.32017
- Jean-Pierre Demailly, Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute to Bernhard Riemann, Milan Journal of Mathematics 78 (2010), 265-277 Zbl1205.32017MR2684780
- Jean-Pierre Demailly, Thomas Peternell, Michael Schneider, Holomorphic line bundles with partially vanishing cohomology, Proceedings of the Hirzebruch 65 conference on algebraic geometry (Ramat Gan, 1993) (1996), 165-198, Bar-Ilan University Zbl0859.14005MR1360502
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Asymptotic invariants of line bundles, Pure Appl. Math. Q. 1 (2005), 379-403 Zbl1139.14008MR2194730
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734 Zbl1127.14010MR2282673
- Tommaso de Fernex, Alex Küronya, Robert Lazarsfeld, Higher cohomology of divisors on projective varieties, Mathematische Annalen 337 (2007), 443-455 Zbl1127.14012MR2262793
- Takao Fujita, Vanishing theorems for semipositive line bundles, Algebraic geometry (Tokyo/Kyoto, 1982) 1016 (1983), 519-528, Springer, Berlin Zbl0522.14010MR726440
- Robin Hartshorne, Algebraic geometry, (1977), Springer Verlag, Berlin Zbl0531.14001MR463157
- Alex Küronya, Asymptotic cohomological functions on projective varieties, American Journal of Mathematics 128 (2006), 1475-1519 Zbl1114.14005MR2275909
- Robert Lazarsfeld, Positivity in Algebraic Geometry I.-II, 48-49 (2004), 519-528, Springer Verlag, Berlin Zbl1093.14500MR2095471
- Shin-ichi Matsumura, Restricted volumes and divisorial Zariski decompositions Zbl1277.14006
- Sebastian Neumann, A decomposition of the moving cone of a projective manifold according to the Harder-Narasimhan filtration of the tangent bundle, (2009) Zbl1196.14004
- Burt Totaro, Line bundles with partially vanishing cohomology Zbl1277.14007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.