Asymptotic invariants of base loci
Lawrence Ein[1]; Robert Lazarsfeld[2]; Mircea Mustaţă[3]; Michael Nakamaye[4]; Mihnea Popa[5]
- [1] University of Illinois at Chicago Department of Mathematics 851 South Morgan Street (M/C 249) Chicago IL 60607-7045 (USA)
- [2] University of Michigan Department of Mathematics Ann Arbor, MI 48109 (USA)
- [3] University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA)
- [4] University of NewMexico Department of Mathematics and Statistics Albuquerque New Mexico 87131 (USA)
- [5] University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1701-1734
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEin, Lawrence, et al. "Asymptotic invariants of base loci." Annales de l’institut Fourier 56.6 (2006): 1701-1734. <http://eudml.org/doc/10189>.
@article{Ein2006,
abstract = {The purpose of this paper is to define and study systematically some asymptotic invariants associated to base loci of line bundles on smooth projective varieties. The functional behavior of these invariants is related to the set-theoretic behavior of base loci.},
affiliation = {University of Illinois at Chicago Department of Mathematics 851 South Morgan Street (M/C 249) Chicago IL 60607-7045 (USA); University of Michigan Department of Mathematics Ann Arbor, MI 48109 (USA); University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA); University of NewMexico Department of Mathematics and Statistics Albuquerque New Mexico 87131 (USA); University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)},
author = {Ein, Lawrence, Lazarsfeld, Robert, Mustaţă, Mircea, Nakamaye, Michael, Popa, Mihnea},
journal = {Annales de l’institut Fourier},
keywords = {Base loci; asymptotic invariants; multiplier ideals; base loci},
language = {eng},
number = {6},
pages = {1701-1734},
publisher = {Association des Annales de l’institut Fourier},
title = {Asymptotic invariants of base loci},
url = {http://eudml.org/doc/10189},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Ein, Lawrence
AU - Lazarsfeld, Robert
AU - Mustaţă, Mircea
AU - Nakamaye, Michael
AU - Popa, Mihnea
TI - Asymptotic invariants of base loci
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1701
EP - 1734
AB - The purpose of this paper is to define and study systematically some asymptotic invariants associated to base loci of line bundles on smooth projective varieties. The functional behavior of these invariants is related to the set-theoretic behavior of base loci.
LA - eng
KW - Base loci; asymptotic invariants; multiplier ideals; base loci
UR - http://eudml.org/doc/10189
ER -
References
top- L. Bădescu, Algebraic surfaces, Universitext (2001), Springer-Verlag, New York Zbl0965.14001
- T. Bauer, A. Küronya, T. Szemberg, Zariski chambers, volumes, and stable base loci, J. reine angew. Math. 576 (2004), 209-233 Zbl1055.14007MR2099205
- S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), 45-76 Zbl1054.32010
- S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Zbl1267.32017
- N. Bourbaki, Algèbre commutative. Éléments de mathématique, Chap. 1–7, (1961-1965), Hermann, Paris
- A.-M. Castraveţ, J. Tevelev, Hilbert’s -th problem and Cox rings Zbl1117.14048
- D. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom. 4 (1995), 17-50 Zbl0846.14032MR1299003
- S. D. Cutkosky, Zariski decomposition of divisors on algebraic varieties, Duke Math. J. 53 (1986), 149-156 Zbl0604.14002MR835801
- J.-P. Demailly, L. Ein, R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
- L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Asymptotic invariants of line bundles Zbl1139.14008
- L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Restricted volumes and asymptotic base loci, (2005)
- L. Ein, R. Lazarsfeld, K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), 241-252 Zbl1076.13501MR1826369
- Y. Hu, S. Keel, Mori Dream Spaces and GIT, Michigan Math. J. 48 (2000), 331-348 Zbl1077.14554MR1786494
- E. Javier Elizondo, K. Kurano, K. Watanabe, The total coordinate ring of a normal projective variety, J. Algebra 276 (2004), 625-637 Zbl1074.14006MR2058459
- A. Küronya, Volumes of line bundles Zbl1326.14012
- R. Lazarsfeld, Positivity in algebraic geometry, I–II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 48–49 (2004), Springer-Verlag, Berlin Zbl1066.14021MR2095471
- M. Mustaţă, On multiplicities of graded sequences of ideals, J. Algebra 256 (2002), 229-249 Zbl1076.13500MR1936888
- M. Nakamaye, Stable base loci of linear series, Math. Ann. 318 (2000), 837-847 Zbl1063.14008MR1802513
- M. Nakamaye, Base loci of linear series are numerically determined, Trans. Amer. Math. Soc. 355 (2002), 551-566 Zbl1017.14017MR1932713
- N. Nakayama, Zariski-decomposition and abundance, Math. Society of Japan Memoirs 14 (2004), Mathematical Society of Japan, Tokyo Zbl1061.14018MR2104208
- B. Tessier, Sur une inégalité de Minkowski pour les multiplicités, Appendix to a paper of D. Eisenbud and H.I. Levine, The degree of a map germ, Ann. Math. 106 (1977), 38-44 Zbl0443.13010
- A. Wolfe, Asymptotic invariants of graded systems of ideals and linear systems on projective bundles, (2005)
Citations in EuDML Documents
top- Salvatore Cacciola, Angelo Felice Lopez, Nakamaye’s theorem on log canonical pairs
- Alex Küronya, Positivity on subvarieties and vanishing of higher cohomology
- Robert Lazarsfeld, Mircea Mustață, Convex bodies associated to linear series
- Mattias Jonsson, Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals
- Huayi Chen, Fonction de Seshadri arithmétique en géométrie d’Arakelov
- Shin-ichi Matsumura, Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.