An introduction to quantum sheaf cohomology
Eric Sharpe[1]
- [1] Virginia Tech Physics Department Robeson Hall (0435) Blacksburg, VA 24061 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2985-3005
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSharpe, Eric. "An introduction to quantum sheaf cohomology." Annales de l’institut Fourier 61.7 (2011): 2985-3005. <http://eudml.org/doc/275523>.
@article{Sharpe2011,
abstract = {In this note we review “quantum sheaf cohomology,” a deformation of sheaf cohomology that arises in a fashion closely akin to (and sometimes generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in the study of (0,2) mirror symmetry, which we review. We then review standard topological field theories and the A/2, B/2 models, in which quantum sheaf cohomology arises, and outline basic definitions and computations. We then discuss (2,2) and (0,2) supersymmetric Landau-Ginzburg models, and quantum sheaf cohomology in that context.},
affiliation = {Virginia Tech Physics Department Robeson Hall (0435) Blacksburg, VA 24061 (USA)},
author = {Sharpe, Eric},
journal = {Annales de l’institut Fourier},
keywords = {(0; 2) mirror symmetry; quantum sheaf cohomology; Landau-Ginzburg model; (0, 2) mirror symmetry},
language = {eng},
number = {7},
pages = {2985-3005},
publisher = {Association des Annales de l’institut Fourier},
title = {An introduction to quantum sheaf cohomology},
url = {http://eudml.org/doc/275523},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Sharpe, Eric
TI - An introduction to quantum sheaf cohomology
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2985
EP - 3005
AB - In this note we review “quantum sheaf cohomology,” a deformation of sheaf cohomology that arises in a fashion closely akin to (and sometimes generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in the study of (0,2) mirror symmetry, which we review. We then review standard topological field theories and the A/2, B/2 models, in which quantum sheaf cohomology arises, and outline basic definitions and computations. We then discuss (2,2) and (0,2) supersymmetric Landau-Ginzburg models, and quantum sheaf cohomology in that context.
LA - eng
KW - (0; 2) mirror symmetry; quantum sheaf cohomology; Landau-Ginzburg model; (0, 2) mirror symmetry
UR - http://eudml.org/doc/275523
ER -
References
top- Allan Adams, Anirban Basu, Savdeep Sethi, duality, Adv. Theor. Math. Phys. 7 (2003), 865-950 Zbl1058.81064MR2045304
- Allan Adams, Jacques Distler, Morten Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006), 657-682 Zbl1116.81049MR2281544
- Matt Ando, Eric Sharpe, Elliptic genera of Landau-Ginzburg models over nontrivial spaces Zbl1283.35132
- Ralph Blumenhagen, Rolf Schimmrigk, Andreas Wißkirchen, mirror symmetry, Nuclear Phys. B 486 (1997), 598-628 Zbl0925.14014MR1436158
- Ralph Blumenhagen, Savdeep Sethi, On orbifolds of models, Nuclear Phys. B 491 (1997), 263-278 Zbl0925.32013MR1449061
- Ron Donagi, Josh Guffin, Sheldon Katz, Eric Sharpe, A mathematical theory of quantum sheaf cohomology Zbl1300.32022
- Ron Donagi, Josh Guffin, Sheldon Katz, Eric Sharpe, Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties Zbl1306.81217
- Ron Donagi, Eric Sharpe, GLSM’s for partial flag manifolds, J. Geom. Phys. 58 (2008), 1662-1692 Zbl1218.81091MR2468445
- Huijun Fan, Tyler Jarvis, Yongbin Ruan, The Witten equation and its virtual fundamental cycle Zbl1310.32032
- Huijun Fan, Tyler Jarvis, Yongbin Ruan, The Witten equation, mirror symmetry, and quantum singularity theory Zbl1310.32032
- B. R. Greene, M. R. Plesser, Duality in Calabi-Yau moduli space, Nuclear Phys. B 338 (1990), 15-37 MR1059831
- Josh Guffin, Sheldon Katz, Deformed quantum cohomology and mirror symmetry, J. High Energy Phys. (2010) Zbl1290.81120MR2756043
- Josh Guffin, Eric Sharpe, A-twisted heterotic Landau-Ginzburg models, J. Geom. Phys. 59 (2009), 1581-1596 Zbl1187.81189MR2583794
- Josh Guffin, Eric Sharpe, A-twisted Landau-Ginzburg models, J. Geom. Phys. 59 (2009), 1547-1580 Zbl1187.81188MR2583793
- Kentaro Hori, Cumrun Vafa, Mirror symmetry
- Kei Ito, Topological phase of N=2 superconformal field theory and topological Landau-Ginzburg field theory, Phys. Lett. B250 (1990), 91-95 MR1081501
- Sheldon Katz, Eric Sharpe, Notes on certain correlation functions, Comm. Math. Phys. 262 (2006), 611-644 Zbl1109.81066MR2202305
- Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), 120-139, Birkhäuser, Basel Zbl0846.53021MR1403918
- Maximilian Kreuzer, Jock McOrist, Ilarion V. Melnikov, M.Ronen Plesser, (0,2) deformations of linear sigma models, J. High Energy Phys. (2011) Zbl1298.81146MR2875974
- Jock McOrist, Ilarion V. Melnikov, Half-twisted correlators from the Coulomb branch, J. High Energy Phys. (2008) Zbl1246.81339MR2425232
- Jock McOrist, Ilarion V. Melnikov, Summing the instantons in half-twisted linear sigma models, J. High Energy Phys. (2009) Zbl1245.81249MR2486403
- Ilarion V. Melnikov, Landau-Ginzburg models and residues, J. High Energy Phys. (2009) MR2580690
- Ilarion V. Melnikov, M.Ronen Plesser, A (0,2) mirror map, J. High Energy Phys. (2011) Zbl1294.81223MR2820839
- Ilarion V. Melnikov, Savdeep Sethi, Half-twisted Landau-Ginzburg models, J. High Energy Phys. (2008) Zbl1271.32020MR2391080
- David R. Morrison, M. Ronen Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nuclear Phys. B 440 (1995), 279-354 Zbl0908.14014MR1336089
- David R. Morrison, M. Ronen Plesser, Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Strings ’95 (Los Angeles, CA, 1995) (1996), 374-387, World Sci. Publ., River Edge, NJ Zbl0957.81656MR1660724
- Eric Sharpe, Notes on correlation functions in theories, Snowbird lectures on string geometry 401 (2006), 93-104, Amer. Math. Soc., Providence, RI Zbl1172.14331MR2222532
- Eric Sharpe, Notes on certain other correlation functions, Adv. Theor. Math. Phys. 13 (2009), 33-70 Zbl1171.81420MR2471852
- Cumrun Vafa, Topological Landau-Ginzburg models, Mod. Phys. Lett. A6 (1991), 337-346 Zbl1020.81886MR1093562
- Edward Witten, Mirror manifolds and topological field theory, Essays on mirror manifolds (1992), 120-158, Int. Press, Hong Kong Zbl0904.58009MR1191422
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.