Quantum Cohomology of Complete Intersections
Arnaud Beauville (1997)
Recherche Coopérative sur Programme n°25
Similarity:
Arnaud Beauville (1997)
Recherche Coopérative sur Programme n°25
Similarity:
Cao, Huai-Dong, Zhou, Jian (1999)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
David Eisenbud, Frank-Olaf Schreyer (2010)
Journal of the European Mathematical Society
Similarity:
We show that the cohomology table of any coherent sheaf on projective space is a convergent—but possibly infinite—sum of positive real multiples of the cohomology tables of what we call supernatural sheaves.
Pierre Berthelot (2012)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Satya Deo (1983)
Mathematische Annalen
Similarity:
Ruan, Yongbin (1998)
Documenta Mathematica
Similarity:
P. Berthelot, A. Ogus (1983)
Inventiones mathematicae
Similarity:
Kim, Bumsig (1999)
Annals of Mathematics. Second Series
Similarity:
Giorgio Bolondi (1987)
Bulletin de la Société Mathématique de France
Similarity:
John W. Rutter (1976)
Colloquium Mathematicae
Similarity:
Roy Joshua (1987)
Mathematische Zeitschrift
Similarity:
Takeo Ohsawa (1992)
Mathematische Zeitschrift
Similarity:
de Jong, Johan, van der Put, Maurius (1996)
Documenta Mathematica
Similarity:
Andrzej Czarnecki (2014)
Annales Polonici Mathematici
Similarity:
A characterisation of trivial 1-cohomology, in terms of some connectedness condition, is presented for a broad class of metric spaces.
Malakhaltsev, M.A. (1999)
Lobachevskii Journal of Mathematics
Similarity:
Hiroshi Iritani (2011)
Annales de l’institut Fourier
Similarity:
In a previous paper, the author introduced an integral structure in quantum cohomology defined by the -theory and the Gamma class and showed that it is compatible with mirror symmetry for toric orbifolds. Applying the quantum Lefschetz principle to the previous results, we find an explicit relationship between solutions to the quantum differential equation of toric complete intersections and the periods (or oscillatory integrals) of their mirrors. We describe in detail the mirror isomorphism...