Models of group schemes of roots of unity

A. Mézard[1]; M. Romagny[2]; D. Tossici[3]

  • [1] Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
  • [2] Institut de Recherche Mathématique de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
  • [3] Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 1055-1135
  • ISSN: 0373-0956

Abstract

top
Let 𝒪 K be a discrete valuation ring of mixed characteristics ( 0 , p ) , with residue field k . Using work of Sekiguchi and Suwa, we construct some finite flat 𝒪 K -models of the group scheme μ p n , K of p n -th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When k is perfect and 𝒪 K is a complete totally ramified extension of the ring of Witt vectors W ( k ) , we provide a parallel study of the Breuil-Kisin modules of finite flat models of μ p n , K , in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for n 3 . This leads us to conjecture that all finite flat models of μ p n , K are Kummer group schemes.

How to cite

top

Mézard, A., Romagny, M., and Tossici, D.. "Models of group schemes of roots of unity." Annales de l’institut Fourier 63.3 (2013): 1055-1135. <http://eudml.org/doc/275525>.

@article{Mézard2013,
abstract = {Let $\mathcal\{O\}_K$ be a discrete valuation ring of mixed characteristics $(0,p)$, with residue field $k$. Using work of Sekiguchi and Suwa, we construct some finite flat $\mathcal\{O\}_K$-models of the group scheme $\mu _\{p^n,K\}$ of $p^n$-th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When $k$ is perfect and $\mathcal\{O\}_K$ is a complete totally ramified extension of the ring of Witt vectors $W(k)$, we provide a parallel study of the Breuil-Kisin modules of finite flat models of $\mu _\{p^n,K\}$, in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for $n\le 3$. This leads us to conjecture that all finite flat models of $\mu _\{p^n,K\}$ are Kummer group schemes.},
affiliation = {Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France; Institut de Recherche Mathématique de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France; Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy},
author = {Mézard, A., Romagny, M., Tossici, D.},
journal = {Annales de l’institut Fourier},
keywords = {group schemes; roots of unity; Breuil-Kisin module},
language = {eng},
number = {3},
pages = {1055-1135},
publisher = {Association des Annales de l’institut Fourier},
title = {Models of group schemes of roots of unity},
url = {http://eudml.org/doc/275525},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Mézard, A.
AU - Romagny, M.
AU - Tossici, D.
TI - Models of group schemes of roots of unity
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1055
EP - 1135
AB - Let $\mathcal{O}_K$ be a discrete valuation ring of mixed characteristics $(0,p)$, with residue field $k$. Using work of Sekiguchi and Suwa, we construct some finite flat $\mathcal{O}_K$-models of the group scheme $\mu _{p^n,K}$ of $p^n$-th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When $k$ is perfect and $\mathcal{O}_K$ is a complete totally ramified extension of the ring of Witt vectors $W(k)$, we provide a parallel study of the Breuil-Kisin modules of finite flat models of $\mu _{p^n,K}$, in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for $n\le 3$. This leads us to conjecture that all finite flat models of $\mu _{p^n,K}$ are Kummer group schemes.
LA - eng
KW - group schemes; roots of unity; Breuil-Kisin module
UR - http://eudml.org/doc/275525
ER -

References

top
  1. A. Abbes, T. Saito, Ramification of local fields with imperfect residue fields I, Amer. J. Math. 124 (2002), 879-920 Zbl1084.11064MR1925338
  2. D. Abramovich, M. Romagny, Moduli of Galois covers in mixed characteristics Zbl1271.14032
  3. C. Breuil, Schémas en groupes et corps des normes 
  4. C. Breuil, Integral p -adic Hodge Theory, Algebraic geometry 2000, Azumino (Hotaka) 36 (2002), 51-80, Math. Soc. Japan Zbl1046.11085MR1971512
  5. N. P. Byott, Cleft extensions of Hopf algebras, Proc. London Math. Soc. 67 (1993), 227-307 Zbl0795.16026MR1220775
  6. X. Caruso, Estimation des dimensions de certaines variétés de Kisin 
  7. L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, 80 (2000), American Mathematical Society Zbl0944.11038MR1767499
  8. L. N. Childs, R. G. Underwood, Cyclic Hopf orders defined by isogenies of formal groups, Amer. J. of Math. 125 (2003), 1295-1334 Zbl1041.16026MR2018662
  9. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, 150 (1995), Springer-Verlag Zbl0819.13001MR1322960
  10. L. Fargues, La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math. 645 (2010), 1-39 Zbl1199.14015MR2673421
  11. J.-M. Fontaine, Représentations p -adiques des corps locaux I, The Grothendieck Festschrift, Vol. II 87 (1990), 249-309, Birkhäuser Zbl0575.14038MR1106901
  12. C. Greither, Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z. 210 (1992), 37-67 Zbl0737.11038MR1161169
  13. C. Greither, L. Childs, p -Elementary group schemes-constructions and Raynaud’s Theory, Hopf algebra, Polynomial formal Groups and Raynaud Orders 136 (1998), 91-118, Mem. Amer. Soc. Zbl0983.14032
  14. N. Imai, On the connected components of moduli spaces of finite flat models Zbl1205.14025
  15. N. Katz, B. Mazur, Arithmetic moduli of elliptic curves, 108 (1985), Princeton University Press Zbl0576.14026MR772569
  16. M. Kisin, Crystalline representations and F -crystals, Algebraic geometry and number theory 253 (2006), 459-496, Birkhäuser Zbl1184.11052MR2263197
  17. M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), 1085-1180 Zbl1201.14034MR2600871
  18. R. Larson, Hopf algebra orders determined by group valuations, J. Algebra 38 (1976), 414-452 Zbl0407.20007MR404413
  19. E. Lau, A relation between Dieudonné displays and crystalline Dieudonné theory Zbl1308.14046
  20. T. Liu, The correspondence between Barsotti-Tate groups and Kisin modules when p = 2  Zbl1327.14206
  21. Y. I. Manin, Cubic forms. Algebra, geometry, arithmetic, (1986), North-Holland Zbl0582.14010MR833513
  22. A. Mézard, M. Romagny, D. Tossici, Sekiguchi-Suwa Theory revisited 
  23. M. Romagny, Effective models of group schemes Zbl1271.14069
  24. T. Sekiguchi, N. Oort, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22 (1989), 345-375 Zbl0714.14024MR1011987
  25. T. Sekiguchi, N. Suwa, On the unified Kummer-Artin-Schreier-Witt Theory 
  26. T. Sekiguchi, N. Suwa, A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree p 2 , Tohoku Math. J. (2) 53 (2001), 203-240 Zbl1073.14546MR1829979
  27. J.-P. Serre, Corps Locaux, (1980), Hermann Zbl0137.02501MR354618
  28. J. D. H. Smith, An introduction to quasigroups and their representations, (2007), Chapman & Hall Zbl1122.20035MR2268350
  29. J. Tate, F. Oort, Group schemes of prime order, Ann. Sci. Ec. Norm. Sup. 3 (1970), 1-21 Zbl0195.50801MR265368
  30. D. Tossici, Effective models and extension of torsors over a discrete valuation ring of unequal characteristic, (2008), Int. Math. Res. Not. IMRN Zbl1194.14069MR2448085
  31. D. Tossici, Models of μ p 2 , K over a discrete valuation ring. With an appendix by Xavier Caruso, J. Algebra 323 (2010), 1908-1957 Zbl1193.14059MR2594655
  32. R. Underwood, R -Hopf algebra orders in K C p 2 , J. Alg. 169 (1994), 418-440 Zbl0820.16036MR1297158
  33. W. Waterhouse, B. Weisfeiler, One-dimensional affine group schemes, J. Algebra 66 (1980), 550-568 Zbl0452.14013MR593611

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.