Models of group schemes of roots of unity
A. Mézard[1]; M. Romagny[2]; D. Tossici[3]
- [1] Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
- [2] Institut de Recherche Mathématique de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
- [3] Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 3, page 1055-1135
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMézard, A., Romagny, M., and Tossici, D.. "Models of group schemes of roots of unity." Annales de l’institut Fourier 63.3 (2013): 1055-1135. <http://eudml.org/doc/275525>.
@article{Mézard2013,
abstract = {Let $\mathcal\{O\}_K$ be a discrete valuation ring of mixed characteristics $(0,p)$, with residue field $k$. Using work of Sekiguchi and Suwa, we construct some finite flat $\mathcal\{O\}_K$-models of the group scheme $\mu _\{p^n,K\}$ of $p^n$-th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When $k$ is perfect and $\mathcal\{O\}_K$ is a complete totally ramified extension of the ring of Witt vectors $W(k)$, we provide a parallel study of the Breuil-Kisin modules of finite flat models of $\mu _\{p^n,K\}$, in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for $n\le 3$. This leads us to conjecture that all finite flat models of $\mu _\{p^n,K\}$ are Kummer group schemes.},
affiliation = {Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France; Institut de Recherche Mathématique de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France; Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy},
author = {Mézard, A., Romagny, M., Tossici, D.},
journal = {Annales de l’institut Fourier},
keywords = {group schemes; roots of unity; Breuil-Kisin module},
language = {eng},
number = {3},
pages = {1055-1135},
publisher = {Association des Annales de l’institut Fourier},
title = {Models of group schemes of roots of unity},
url = {http://eudml.org/doc/275525},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Mézard, A.
AU - Romagny, M.
AU - Tossici, D.
TI - Models of group schemes of roots of unity
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1055
EP - 1135
AB - Let $\mathcal{O}_K$ be a discrete valuation ring of mixed characteristics $(0,p)$, with residue field $k$. Using work of Sekiguchi and Suwa, we construct some finite flat $\mathcal{O}_K$-models of the group scheme $\mu _{p^n,K}$ of $p^n$-th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When $k$ is perfect and $\mathcal{O}_K$ is a complete totally ramified extension of the ring of Witt vectors $W(k)$, we provide a parallel study of the Breuil-Kisin modules of finite flat models of $\mu _{p^n,K}$, in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for $n\le 3$. This leads us to conjecture that all finite flat models of $\mu _{p^n,K}$ are Kummer group schemes.
LA - eng
KW - group schemes; roots of unity; Breuil-Kisin module
UR - http://eudml.org/doc/275525
ER -
References
top- A. Abbes, T. Saito, Ramification of local fields with imperfect residue fields I, Amer. J. Math. 124 (2002), 879-920 Zbl1084.11064MR1925338
- D. Abramovich, M. Romagny, Moduli of Galois covers in mixed characteristics Zbl1271.14032
- C. Breuil, Schémas en groupes et corps des normes
- C. Breuil, Integral -adic Hodge Theory, Algebraic geometry 2000, Azumino (Hotaka) 36 (2002), 51-80, Math. Soc. Japan Zbl1046.11085MR1971512
- N. P. Byott, Cleft extensions of Hopf algebras, Proc. London Math. Soc. 67 (1993), 227-307 Zbl0795.16026MR1220775
- X. Caruso, Estimation des dimensions de certaines variétés de Kisin
- L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, 80 (2000), American Mathematical Society Zbl0944.11038MR1767499
- L. N. Childs, R. G. Underwood, Cyclic Hopf orders defined by isogenies of formal groups, Amer. J. of Math. 125 (2003), 1295-1334 Zbl1041.16026MR2018662
- D. Eisenbud, Commutative algebra with a view toward algebraic geometry, 150 (1995), Springer-Verlag Zbl0819.13001MR1322960
- L. Fargues, La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math. 645 (2010), 1-39 Zbl1199.14015MR2673421
- J.-M. Fontaine, Représentations -adiques des corps locaux I, The Grothendieck Festschrift, Vol. II 87 (1990), 249-309, Birkhäuser Zbl0575.14038MR1106901
- C. Greither, Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z. 210 (1992), 37-67 Zbl0737.11038MR1161169
- C. Greither, L. Childs, -Elementary group schemes-constructions and Raynaud’s Theory, Hopf algebra, Polynomial formal Groups and Raynaud Orders 136 (1998), 91-118, Mem. Amer. Soc. Zbl0983.14032
- N. Imai, On the connected components of moduli spaces of finite flat models Zbl1205.14025
- N. Katz, B. Mazur, Arithmetic moduli of elliptic curves, 108 (1985), Princeton University Press Zbl0576.14026MR772569
- M. Kisin, Crystalline representations and -crystals, Algebraic geometry and number theory 253 (2006), 459-496, Birkhäuser Zbl1184.11052MR2263197
- M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), 1085-1180 Zbl1201.14034MR2600871
- R. Larson, Hopf algebra orders determined by group valuations, J. Algebra 38 (1976), 414-452 Zbl0407.20007MR404413
- E. Lau, A relation between Dieudonné displays and crystalline Dieudonné theory Zbl1308.14046
- T. Liu, The correspondence between Barsotti-Tate groups and Kisin modules when Zbl1327.14206
- Y. I. Manin, Cubic forms. Algebra, geometry, arithmetic, (1986), North-Holland Zbl0582.14010MR833513
- A. Mézard, M. Romagny, D. Tossici, Sekiguchi-Suwa Theory revisited
- M. Romagny, Effective models of group schemes Zbl1271.14069
- T. Sekiguchi, N. Oort, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22 (1989), 345-375 Zbl0714.14024MR1011987
- T. Sekiguchi, N. Suwa, On the unified Kummer-Artin-Schreier-Witt Theory
- T. Sekiguchi, N. Suwa, A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree , Tohoku Math. J. (2) 53 (2001), 203-240 Zbl1073.14546MR1829979
- J.-P. Serre, Corps Locaux, (1980), Hermann Zbl0137.02501MR354618
- J. D. H. Smith, An introduction to quasigroups and their representations, (2007), Chapman & Hall Zbl1122.20035MR2268350
- J. Tate, F. Oort, Group schemes of prime order, Ann. Sci. Ec. Norm. Sup. 3 (1970), 1-21 Zbl0195.50801MR265368
- D. Tossici, Effective models and extension of torsors over a discrete valuation ring of unequal characteristic, (2008), Int. Math. Res. Not. IMRN Zbl1194.14069MR2448085
- D. Tossici, Models of over a discrete valuation ring. With an appendix by Xavier Caruso, J. Algebra 323 (2010), 1908-1957 Zbl1193.14059MR2594655
- R. Underwood, -Hopf algebra orders in , J. Alg. 169 (1994), 418-440 Zbl0820.16036MR1297158
- W. Waterhouse, B. Weisfeiler, One-dimensional affine group schemes, J. Algebra 66 (1980), 550-568 Zbl0452.14013MR593611
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.