Sekiguchi-Suwa theory revisited
Ariane Mézard[1]; Matthieu Romagny[2]; Dajano Tossici[3]
- [1] Institut de Mathématiques de Jussieu Université Pierre et Marie Curie 4 place Jussieu 75252 Paris Cedex 05, France
- [2] Institut de Recherche Mathématique de Rennes Université de Rennes 1 Campus de Beaulieu (Bât. 22) 35042 Rennes Cedex, France
- [3] Scuola Normale Superiore di Pisa Piazza dei Cavalieri 7 56126 Pisa, Italy
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 1, page 163-200
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMézard, Ariane, Romagny, Matthieu, and Tossici, Dajano. "Sekiguchi-Suwa theory revisited." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 163-200. <http://eudml.org/doc/275720>.
@article{Mézard2014,
abstract = {We present an account of the construction by S. Sekiguchi and N. Suwa of a cyclic isogeny of affine smooth group schemes unifying the Kummer and Artin-Schreier-Witt isogenies. We complete the construction over an arbitrary base ring. We extend the statements of some results in a form adapted to a further investigation of the models of the group schemes of roots of unity.},
affiliation = {Institut de Mathématiques de Jussieu Université Pierre et Marie Curie 4 place Jussieu 75252 Paris Cedex 05, France; Institut de Recherche Mathématique de Rennes Université de Rennes 1 Campus de Beaulieu (Bât. 22) 35042 Rennes Cedex, France; Scuola Normale Superiore di Pisa Piazza dei Cavalieri 7 56126 Pisa, Italy},
author = {Mézard, Ariane, Romagny, Matthieu, Tossici, Dajano},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {smooth group schema; Artin-Schreier-Witt isogeny; Witt vector; Artin-Hasse exponential},
language = {eng},
month = {4},
number = {1},
pages = {163-200},
publisher = {Société Arithmétique de Bordeaux},
title = {Sekiguchi-Suwa theory revisited},
url = {http://eudml.org/doc/275720},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Mézard, Ariane
AU - Romagny, Matthieu
AU - Tossici, Dajano
TI - Sekiguchi-Suwa theory revisited
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/4//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 1
SP - 163
EP - 200
AB - We present an account of the construction by S. Sekiguchi and N. Suwa of a cyclic isogeny of affine smooth group schemes unifying the Kummer and Artin-Schreier-Witt isogenies. We complete the construction over an arbitrary base ring. We extend the statements of some results in a form adapted to a further investigation of the models of the group schemes of roots of unity.
LA - eng
KW - smooth group schema; Artin-Schreier-Witt isogeny; Witt vector; Artin-Hasse exponential
UR - http://eudml.org/doc/275720
ER -
References
top- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Ergebnisse der Math. 3. Folge, Bd. 21, Springer (1990). Zbl0705.14001
- N. Bourbaki, Algèbre commutative, Chapitre 9. Anneaux locaux noethériens complets, Masson (1983). Zbl0579.13001MR722608
- P. Cartier, Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A49–A52. Zbl0168.27501MR218361
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Publ. Math. IHES 20 (1964). Zbl0136.15901
- D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., Springer-Verlag (1995). Zbl0819.13001
- A. Mézard, M. Romagny, D. Tossici, Models of group schemes of roots of unity, Ann. Inst. Fourier 63, no. 3 (2013), 1055–1135. Zbl1297.14051
- M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, tome 1, Springer Lecture Notes in Mathematics 269 (1972). Zbl0234.00007
- T. Sekiguchi, On the deformations of Witt groups to tori. II, J. Algebra 138, no. 2 (1991), 273–297. Zbl0735.14033
- T. Sekiguchi, F. Oort, N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22 no. 3 (1989), 345–375. Zbl0714.14024MR1011987
- T. Sekiguchi and N. Suwa, A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree , Tohoku Math. J. (2) 53 no. 2 (2001), 203–240. Zbl1073.14546MR1829979
- T. Sekiguchi and N. Suwa, A note on extensions of algebraic and formal groups. V, Japan. J. Math. 29, no. 2 (2003), 221–284. Zbl1075.14045
- T. Sekiguchi and N. Suwa, On the unified Kummer-Artin-Schreier-Witt Theory, no. 111 in the preprint series of the Laboratoire de Mathématiques Pures de Bordeaux (1999).
- T. Sekiguchi and N. Suwa, Some cases of extensions of group sche,es over a discrete valuation ring I, J. Fac. Sci. Univ. Tokyo, Sect IA, Math, 38 (1991), 1–45. Zbl0793.14035MR1104364
- D. Tossici, Models of over a discrete valuation ring, with an appendix by X. Caruso. J. Algebra 323 no. 7 (2010), 1908–1957. Zbl1193.14059MR2594655
- W. Waterhouse, B. Weisfeiler, One-dimensional affine group schemes, J. Algebra 66 no. 2 (1980), 550–568. Zbl0452.14013MR593611
- T. Yasuda, Non-adic formal schemes, Int. Math. Res. Not. IMRN no. 13 (2009), 2417–2475. Zbl1245.14004MR2520785
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.