well-posed Cauchy problems and symmetrizability of first order systems
Guy Métivier[1]
- [1] Université de Bordeaux - CNRS, Institut de Mathématiques de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex, France
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 39-70
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. D. Bronshtejn, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh. 20 (1979), 493-501 Zbl0415.30003MR537355
- A.-P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, (1960), Universidad de Buenos Aires, Buenos Aires Zbl0096.06702MR123834
- K. O. Friedrichs, P. D. Lax, On symmetrizable differential operators, Singular Integrals (Chicago, 1966) (1967), 128-137, Amer. Math. Soc., Providence, R.I. Zbl0184.36603MR239256
- K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392 Zbl0059.08902MR62932
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418 Zbl0083.31802MR100718
- L. Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1-62 Zbl0045.20202MR41336
- L. Gårding, Problèmes de Cauchy pour des systèmes quasi-linéaires d’ordre un, strictement hyperboliques, Les EDP 117 (1963), 33-40, CNRS, Paris Zbl0239.35013
- L. Gårding, Hyperbolic equations in the twentieth century, Matériaux pour l’histoire des mathématiques au XX siècle (Nice, 1996) 3 (1998), 37-68, Soc. Math. France, Paris Zbl1044.01525MR1640255
- L. Hörmander, The analysis of linear partial differential operators. II, 257 (1983), Springer-Verlag, Berlin Zbl0521.35002MR705278
- V. Ja. Ivriĭ, V. M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk 29 (1974), 3-70 Zbl0312.35049MR427843
- J.-L. Joly, G. Métivier, J. Rauch, Hyperbolic domains of determinacy and Hamilton-Jacobi equations, J. Hyperbolic Differ. Equ. 2 (2005), 713-744 Zbl1090.35114MR2172702
- P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627-646 Zbl0083.31801MR97628
- P. D. Lax, Lectures on hyperbolic partial differential equations, (1963), Stanford University
- J. Leray, Hyperbolic differential equations, (1953), The Institute for Advanced Study, Princeton, N.J. Zbl0588.35002MR63548
- P. D. Lax, L. Nirenberg, On stability for difference schemes: A sharp form of Gårding’s inequality, Comm. Pure Appl. Math. 19 (1966), 473-492 Zbl0185.22801MR206534
- S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ. 1 (1961/1962), 109-127 Zbl0104.31903MR170112
- G. Métivier, Para-differential calculus and applications to the Cauchy problem for nonlinear systems, 5 (2008), Edizioni della Normale, Pisa Zbl1156.35002MR2418072
- J. Rauch, Precise finite speed with bare hands, Methods Appl. Anal. 12 (2005), 267-277 Zbl1123.35334MR2254010
- G. Strang, Necessary and insufficient conditions for well-posed Cauchy problems, J. Differential Equations 2 (1966), 107-114 Zbl0131.09102MR194722
- R. Vaillancourt, On the stability of Friedrichs’ scheme and the modified Lax-Wendroff scheme, Math. Comput. 24 (1970), 767-770 Zbl0228.65070MR277125
- M. Yamaguti, Sur l’inégalité d’énergie pour le système hyperbolique, Proc. Japan Acad. 35 (1959), 37-41 Zbl0197.07603MR105565