L 2 well-posed Cauchy problems and symmetrizability of first order systems

Guy Métivier[1]

  • [1] Université de Bordeaux - CNRS, Institut de Mathématiques de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex, France

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 39-70
  • ISSN: 2270-518X

Abstract

top
The Cauchy problem for first order system L ( t , x , t , x ) is known to be well-posed in L 2 when it admits a microlocal symmetrizer S ( t , x , ξ ) which is smooth in ξ and Lipschitz continuous in ( t , x ) . This paper contains three main results. First we show that a Lipschitz smoothness globally in ( t , x , ξ ) is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of full symmetrizers having the same smoothness. This notion was first introduced in [FL67]. This is the key point to prove the third result saying that the existence of microlocal symmetrizer is preserved if one changes the direction of time, implying local uniqueness and finite speed of propagation.

How to cite

top

Métivier, Guy. "$L^2$ well-posed Cauchy problems and symmetrizability of first order systems." Journal de l’École polytechnique — Mathématiques 1 (2014): 39-70. <http://eudml.org/doc/275528>.

@article{Métivier2014,
abstract = {The Cauchy problem for first order system $L(t, x, \partial _t, \partial _x)$ is known to be well-posed in $L^2$ when it admits a microlocal symmetrizer $S(t,x, \xi )$ which is smooth in $\xi $ and Lipschitz continuous in $(t, x)$. This paper contains three main results. First we show that a Lipschitz smoothness globally in $(t,x, \xi )$ is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of full symmetrizers having the same smoothness. This notion was first introduced in [FL67]. This is the key point to prove the third result saying that the existence of microlocal symmetrizer is preserved if one changes the direction of time, implying local uniqueness and finite speed of propagation.},
affiliation = {Université de Bordeaux - CNRS, Institut de Mathématiques de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex, France},
author = {Métivier, Guy},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Systems of partial differential equations; Cauchy problem; hyperbolicity; strong hyperbolicity; symmetrizers; energy estimate; local uniqueness; finite speed of propagation},
language = {eng},
pages = {39-70},
publisher = {École polytechnique},
title = {$L^2$ well-posed Cauchy problems and symmetrizability of first order systems},
url = {http://eudml.org/doc/275528},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Métivier, Guy
TI - $L^2$ well-posed Cauchy problems and symmetrizability of first order systems
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 39
EP - 70
AB - The Cauchy problem for first order system $L(t, x, \partial _t, \partial _x)$ is known to be well-posed in $L^2$ when it admits a microlocal symmetrizer $S(t,x, \xi )$ which is smooth in $\xi $ and Lipschitz continuous in $(t, x)$. This paper contains three main results. First we show that a Lipschitz smoothness globally in $(t,x, \xi )$ is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of full symmetrizers having the same smoothness. This notion was first introduced in [FL67]. This is the key point to prove the third result saying that the existence of microlocal symmetrizer is preserved if one changes the direction of time, implying local uniqueness and finite speed of propagation.
LA - eng
KW - Systems of partial differential equations; Cauchy problem; hyperbolicity; strong hyperbolicity; symmetrizers; energy estimate; local uniqueness; finite speed of propagation
UR - http://eudml.org/doc/275528
ER -

References

top
  1. M. D. Bronshtejn, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh. 20 (1979), 493-501 Zbl0415.30003MR537355
  2. A.-P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, (1960), Universidad de Buenos Aires, Buenos Aires Zbl0096.06702MR123834
  3. K. O. Friedrichs, P. D. Lax, On symmetrizable differential operators, Singular Integrals (Chicago, 1966) (1967), 128-137, Amer. Math. Soc., Providence, R.I. Zbl0184.36603MR239256
  4. K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392 Zbl0059.08902MR62932
  5. K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418 Zbl0083.31802MR100718
  6. L. Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1-62 Zbl0045.20202MR41336
  7. L. Gårding, Problèmes de Cauchy pour des systèmes quasi-linéaires d’ordre un, strictement hyperboliques, Les EDP 117 (1963), 33-40, CNRS, Paris Zbl0239.35013
  8. L. Gårding, Hyperbolic equations in the twentieth century, Matériaux pour l’histoire des mathématiques au XX siècle (Nice, 1996) 3 (1998), 37-68, Soc. Math. France, Paris Zbl1044.01525MR1640255
  9. L. Hörmander, The analysis of linear partial differential operators. II, 257 (1983), Springer-Verlag, Berlin Zbl0521.35002MR705278
  10. V. Ja. Ivriĭ, V. M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk 29 (1974), 3-70 Zbl0312.35049MR427843
  11. J.-L. Joly, G. Métivier, J. Rauch, Hyperbolic domains of determinacy and Hamilton-Jacobi equations, J. Hyperbolic Differ. Equ. 2 (2005), 713-744 Zbl1090.35114MR2172702
  12. P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627-646 Zbl0083.31801MR97628
  13. P. D. Lax, Lectures on hyperbolic partial differential equations, (1963), Stanford University 
  14. J. Leray, Hyperbolic differential equations, (1953), The Institute for Advanced Study, Princeton, N.J. Zbl0588.35002MR63548
  15. P. D. Lax, L. Nirenberg, On stability for difference schemes: A sharp form of Gårding’s inequality, Comm. Pure Appl. Math. 19 (1966), 473-492 Zbl0185.22801MR206534
  16. S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ. 1 (1961/1962), 109-127 Zbl0104.31903MR170112
  17. G. Métivier, Para-differential calculus and applications to the Cauchy problem for nonlinear systems, 5 (2008), Edizioni della Normale, Pisa Zbl1156.35002MR2418072
  18. J. Rauch, Precise finite speed with bare hands, Methods Appl. Anal. 12 (2005), 267-277 Zbl1123.35334MR2254010
  19. G. Strang, Necessary and insufficient conditions for well-posed Cauchy problems, J. Differential Equations 2 (1966), 107-114 Zbl0131.09102MR194722
  20. R. Vaillancourt, On the stability of Friedrichs’ scheme and the modified Lax-Wendroff scheme, Math. Comput. 24 (1970), 767-770 Zbl0228.65070MR277125
  21. M. Yamaguti, Sur l’inégalité d’énergie pour le système hyperbolique, Proc. Japan Acad. 35 (1959), 37-41 Zbl0197.07603MR105565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.