The geometry of non-unit Pisot substitutions

Milton Minervino[1]; Jörg Thuswaldner[1]

  • [1] University of Leoben Department of Mathematics and Information Technology Chair of Mathematics and Statistics Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 4, page 1373-1417
  • ISSN: 0373-0956

Abstract

top
It is known that with a non-unit Pisot substitution σ one can associate certain fractal tiles, so-called Rauzy fractals. In our setting, these fractals are subsets of a certain open subring of the adèle ring of the associated Pisot number field. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, in terms of the dual of the one-dimensional realization of σ , and in the context of model sets for particular cut and project schemes. We also define stepped surfaces suited for non-unit Pisot substitutions. We provide basic topological and geometric properties of the Rauzy fractals, prove some tiling results for them, and provide relations to subshifts defined in terms of the periodic points of σ , to adic transformations, and a domain exchange.

How to cite

top

Minervino, Milton, and Thuswaldner, Jörg. "The geometry of non-unit Pisot substitutions." Annales de l’institut Fourier 64.4 (2014): 1373-1417. <http://eudml.org/doc/275546>.

@article{Minervino2014,
abstract = {It is known that with a non-unit Pisot substitution $\sigma $ one can associate certain fractal tiles, so-called Rauzy fractals. In our setting, these fractals are subsets of a certain open subring of the adèle ring of the associated Pisot number field. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, in terms of the dual of the one-dimensional realization of $\sigma $, and in the context of model sets for particular cut and project schemes. We also define stepped surfaces suited for non-unit Pisot substitutions. We provide basic topological and geometric properties of the Rauzy fractals, prove some tiling results for them, and provide relations to subshifts defined in terms of the periodic points of $\sigma $, to adic transformations, and a domain exchange.},
affiliation = {University of Leoben Department of Mathematics and Information Technology Chair of Mathematics and Statistics Franz-Josef-Strasse 18, A-8700 Leoben (Austria); University of Leoben Department of Mathematics and Information Technology Chair of Mathematics and Statistics Franz-Josef-Strasse 18, A-8700 Leoben (Austria)},
author = {Minervino, Milton, Thuswaldner, Jörg},
journal = {Annales de l’institut Fourier},
keywords = {Rauzy fractal; tiling; $p$-adic completion; beta-numeration; -adic completion},
language = {eng},
number = {4},
pages = {1373-1417},
publisher = {Association des Annales de l’institut Fourier},
title = {The geometry of non-unit Pisot substitutions},
url = {http://eudml.org/doc/275546},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Minervino, Milton
AU - Thuswaldner, Jörg
TI - The geometry of non-unit Pisot substitutions
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1373
EP - 1417
AB - It is known that with a non-unit Pisot substitution $\sigma $ one can associate certain fractal tiles, so-called Rauzy fractals. In our setting, these fractals are subsets of a certain open subring of the adèle ring of the associated Pisot number field. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, in terms of the dual of the one-dimensional realization of $\sigma $, and in the context of model sets for particular cut and project schemes. We also define stepped surfaces suited for non-unit Pisot substitutions. We provide basic topological and geometric properties of the Rauzy fractals, prove some tiling results for them, and provide relations to subshifts defined in terms of the periodic points of $\sigma $, to adic transformations, and a domain exchange.
LA - eng
KW - Rauzy fractal; tiling; $p$-adic completion; beta-numeration; -adic completion
UR - http://eudml.org/doc/275546
ER -

References

top
  1. S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), 11-26, de Gruyter, Berlin Zbl1001.11038MR1770451
  2. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), 283-308 Zbl1032.11033MR1883519
  3. S. Akiyama, G. Barat, V. Berthé, A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions, Monatsh. Math. 155 (2008), 377-419 Zbl1190.11005MR2461585
  4. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
  5. M. Baake, R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. 573 (2004), 61-94 Zbl1188.43008MR2084582
  6. M. Barge, H. Bruin, L. Jones, L. Sadun, Homological Pisot substitutions and exact regularity, Israel J. Math. 188 (2012), 281-300 Zbl1257.37010MR2897733
  7. M. Barge, J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math. 128 (2006), 1219-1282 Zbl1152.37011MR2262174
  8. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, Integers 5 (2005) Zbl1139.37008MR2191748
  9. V. Berthé, A. Siegel, Purely periodic β -expansions in the Pisot non-unit case, J. Number Theory 127 (2007), 153-172 Zbl1197.11139MR2362431
  10. V. Berthé, A. Siegel, W. Steiner, P. Surer, J. M. Thuswaldner, Fractal tiles associated with shift radix systems, Adv. Math. 226 (2011), 139-175 Zbl1221.11018MR2735753
  11. V. Berthé, A. Siegel, J. Thuswaldner, Substitutions, Rauzy fractals and tilings, Combinatorics, automata and number theory 135 (2010), 248-323, Cambridge Univ. Press, Cambridge Zbl1247.37015MR2759108
  12. V. Canterini, A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux 13 (2001), 353-369 Zbl1071.37011MR1879663
  13. V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144 Zbl1142.37302MR1852097
  14. J.-M. Dumont, A. Thomas, Systemes de numeration et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169 Zbl0679.10010MR1020484
  15. F. Durand, Combinatorics on Bratteli diagrams and dynamical systems, Combinatorics, automata and number theory 135 (2010), 324-372, Cambridge Univ. Press, Cambridge Zbl1272.37006MR2759109
  16. N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, 1794 (2002), Springer-Verlag, Berlin Zbl1014.11015MR1970385
  17. C. Frougny, B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), 713-723 Zbl0814.68065MR1200339
  18. S. Ito, H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, Israel J. Math. 153 (2006), 129-155 Zbl1143.37013MR2254640
  19. C. Kalle, W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc. 364 (2012), 2281-2318 Zbl1295.11010MR2888207
  20. K. Kuratowski, Topology. Vol. I, (1966), Academic Press, New York Zbl0158.40802MR217751
  21. R. D. Mauldin, S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829 Zbl0706.28007MR961615
  22. R. V. Moody, Meyer sets and their duals, The mathematics of long-range aperiodic order (Waterloo, ON, 1995) 489 (1997), 403-441, Kluwer Acad. Publ., Dordrecht Zbl0880.43008MR1460032
  23. J. Neukirch, Algebraic number theory, 322 (1999), Springer-Verlag, Berlin Zbl0956.11021MR1697859
  24. M. Queffélec, Substitution dynamical systems—spectral analysis, 1294 (2010), Springer-Verlag, Berlin Zbl0642.28013MR2590264
  25. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
  26. G. Rauzy, Rotations sur les groupes, nombres algébriques, et substitutions, Séminaire de Théorie des Nombres (Talence, 1987-1988), Exp. No. 21 (1988), Univ. Bordeaux I, Talence Zbl0726.11019
  27. Y. Sano, P. Arnoux, S. Ito, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206 Zbl0987.11013MR1828491
  28. J.-P. Serre, Local fields, 67 (1979), Springer-Verlag, New York Zbl0423.12016MR554237
  29. A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dynam. Systems 23 (2003), 1247-1273 Zbl1052.37009MR1997975
  30. A. Siegel, J. M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.) (2009) Zbl1229.28021MR2721985
  31. B. Sing, Pisot substitutions and beyond, (2006) Zbl1210.93006
  32. V. F. Sirvent, B. Solomyak, Pure discrete spectrum for one-dimensional substitution systems of Pisot type, Canad. Math. Bull. 45 (2002), 697-710 Zbl1038.37008MR1941235

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.