Eigenmodes of the damped wave equation and small hyperbolic subsets

Gabriel Rivière[1]

  • [1] Université Lille 1 U.F.R. de Mathématiques Laboratoire Paul Painlevé (U.M.R. CNRS 8524) 59655 Villeneuve d’Ascq Cedex (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 1229-1267
  • ISSN: 0373-0956

Abstract

top
We study stationary solutions of the damped wave equation on a compact and smooth Riemannian manifold without boundary. In the high frequency limit, we prove that a sequence of β -damped stationary solutions cannot be completely concentrated in small neighborhoods of a small fixed hyperbolic subset made of β -damped trajectories of the geodesic flow.The article also includes an appendix (by S. Nonnenmacher and the author) where we establish the existence of an inverse logarithmic strip without eigenvalues below the real axis, under a pressure condition on the set of undamped trajectories.

How to cite

top

Rivière, Gabriel. "Eigenmodes of the damped wave equation and small hyperbolic subsets." Annales de l’institut Fourier 64.3 (2014): 1229-1267. <http://eudml.org/doc/275553>.

@article{Rivière2014,
abstract = {We study stationary solutions of the damped wave equation on a compact and smooth Riemannian manifold without boundary. In the high frequency limit, we prove that a sequence of $\beta $-damped stationary solutions cannot be completely concentrated in small neighborhoods of a small fixed hyperbolic subset made of $\beta $-damped trajectories of the geodesic flow.The article also includes an appendix (by S. Nonnenmacher and the author) where we establish the existence of an inverse logarithmic strip without eigenvalues below the real axis, under a pressure condition on the set of undamped trajectories.},
affiliation = {Université Lille 1 U.F.R. de Mathématiques Laboratoire Paul Painlevé (U.M.R. CNRS 8524) 59655 Villeneuve d’Ascq Cedex (France); Institut de Physique Théorique (CEA Saclay) Orme des Cerisiers, CEA Saclay 91191 Gif-sur-Yvette Cedex (France)},
author = {Rivière, Gabriel},
journal = {Annales de l’institut Fourier},
keywords = {nonselfadjoint operators; semiclassical analysis; eigenmodes; damped wave equation; uniform hyperbolicity; topological pressure; non self adjoint operators},
language = {eng},
number = {3},
pages = {1229-1267},
publisher = {Association des Annales de l’institut Fourier},
title = {Eigenmodes of the damped wave equation and small hyperbolic subsets},
url = {http://eudml.org/doc/275553},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Rivière, Gabriel
TI - Eigenmodes of the damped wave equation and small hyperbolic subsets
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1229
EP - 1267
AB - We study stationary solutions of the damped wave equation on a compact and smooth Riemannian manifold without boundary. In the high frequency limit, we prove that a sequence of $\beta $-damped stationary solutions cannot be completely concentrated in small neighborhoods of a small fixed hyperbolic subset made of $\beta $-damped trajectories of the geodesic flow.The article also includes an appendix (by S. Nonnenmacher and the author) where we establish the existence of an inverse logarithmic strip without eigenvalues below the real axis, under a pressure condition on the set of undamped trajectories.
LA - eng
KW - nonselfadjoint operators; semiclassical analysis; eigenmodes; damped wave equation; uniform hyperbolicity; topological pressure; non self adjoint operators
UR - http://eudml.org/doc/275553
ER -

References

top
  1. N. Anantharaman, Entropy and the localization of eigenfunctions, Ann. of Math. 168 (2008), 438-475 Zbl1175.35036MR2434883
  2. N. Anantharaman, Spectral deviations for the damped wave equation, Geom. Func. Anal. 20 (2010), 593-626 Zbl1205.35173MR2720225
  3. N. Anantharaman, S. Nonnenmacher, Half delocalization of eigenfunctions of the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble) 57 (2007), 2465-2523 Zbl1145.81033MR2394549
  4. M. Asch, G. Lebeau, The spectrum of the damped wave operator for a bounded domain in 2 , Exp. Math. 12 (2003), 227-240 Zbl1061.35064MR2016708
  5. A. Bouzouina, D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. Jour. 111 (2002), 223-252 Zbl1069.35061MR1882134
  6. R. Bowen, D. Ruelle, The ergodic theory of Axiom A flows, Inv. Math. 29 (1975), 181-202 Zbl0311.58010MR380889
  7. Nicolas Burq, Mesures semi-classiques et mesures de défaut (d’après P. Gérard, L. Tartar et al.), Astérisque 245 (1996–1997), 167-196, Société Mathématique de France Zbl0954.35102
  8. Nicolas Burq, H. Christianson, Imperfect control for the damped wave equation, (2009) Zbl1320.35062
  9. Nicolas Burq, M. Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), 443-471 Zbl1050.35058MR2051618
  10. H. Christianson, Semiclassical nonconcentration near hyperbolic orbits, J. Funct. Anal. 246 (2007), 145-195 Zbl1119.58018MR2321040
  11. H. Christianson, Applications of Cutoff Resolvent Estimates to the Wave Equation, Math. Res. Lett. 16 (2009), 577-590 Zbl1189.58012MR2525026
  12. H. Christianson, Quantum Monodromy and Non-concentration Near a Closed Semi-hyperbolic Orbit, Trans. Amer. Math. Soc. 363 (2011), 3373-3438 Zbl1230.58020MR2775812
  13. H. Christianson, E. Schenck, A. Vasy, J. Wunsch, From resolvent estimates to damped waves, To appear in “Journal d’Analyse Mathématique” 
  14. Yves Colin de Verdière, Bernard Parisse, Équilibre instable en régime semi-classique. I. Concentration microlocale, Comm. Partial Differential Equations 19 (1994), 1535-1563 Zbl0819.35116MR1294470
  15. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semiclassical Limit, (1999), Cambridge University Press Zbl0926.35002MR1735654
  16. B. Helffer, A. Martinez, D. Robert, Ergodicité et limite semi-classique, Commun. Math. Phys. 109 (1987), 313-326 Zbl0624.58039MR880418
  17. M. Hitrik, Eigenfrequencies for Damped Wave Equations on Zoll manifolds, Asympt. Analysis 31 (2002), 265-277 Zbl1032.58014MR1937840
  18. M. Hitrik, Eigenfrequencies and Expansions for Damped Wave Equations, Methods and Applications of Analysis 10 (2003), 543-564 Zbl1088.58510MR2105039
  19. Lars Hörmander, The analysis of linear partial differential operators. III, 274 (1985), Springer-Verlag, Berlin Zbl0601.35001MR781536
  20. Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58019MR1326374
  21. G. Lebeau, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli 1993) 19 (1996), 73-109, Math. Phys. Stud. Zbl0863.58068
  22. S. Nonnenmacher, Spectral theory of damped quantum chaotic systems, Journées Équations aux Dérivées Partielles (2011) 
  23. S. Nonnenmacher, M. Zworski, Quantum decay rates in chaotic scattering, Acta Math. 203 (2009), 149-233 Zbl1226.35061MR2570070
  24. Yakov B. Pesin, Dimension theory in dynamical systems, (1997), University of Chicago Press, Chicago, IL Zbl0895.58033MR1489237
  25. Gabriel Rivière, Delocalization of slowly damped eigenmodes on Anosov manifolds, Comm. Math. Phys. 316 (2012), 555-593 Zbl1273.58020MR2993925
  26. J. Royer, Analyse haute fréquence de l’équation de Helmholtz dissipative, (2010) 
  27. E. Schenck, Energy decay for the damped wave equation under a pressure condition, Comm. Math. Phys. 300 (2010), 375-410 Zbl1207.35064MR2728729
  28. E. Schenck, Exponential stabilization without geometric control, Math. Research Letters 18 (2011), 379-388 Zbl1244.93144MR2784679
  29. J. Sjöstrand, Asymptotic distributions of eigenfrequencies for damped wave equations, Publ. RIMS 36 (2000), 573-611 Zbl0984.35121
  30. John A. Toth, Steve Zelditch, L p norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré 4 (2003), 343-368 Zbl1028.58028MR1985776
  31. Steve Zelditch, Recent developments in mathematical quantum chaos, Current developments in mathematics, 2009 (2010), 115-204, Int. Press, Somerville, MA Zbl1223.37113MR2757360
  32. Maciej Zworski, Semiclassical analysis, 138 (2012), American Mathematical Society, Providence, RI Zbl1252.58001MR2952218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.