The spectrum of the damped wave operator for a bounded domain in .

Asch, Mark; Lebeau, Gilles

Experimental Mathematics (2003)

  • Volume: 12, Issue: 2, page 227-241
  • ISSN: 1058-6458

How to cite

top

Asch, Mark, and Lebeau, Gilles. "The spectrum of the damped wave operator for a bounded domain in .." Experimental Mathematics 12.2 (2003): 227-241. <http://eudml.org/doc/51262>.

@article{Asch2003,
author = {Asch, Mark, Lebeau, Gilles},
journal = {Experimental Mathematics},
keywords = {spectrum; non-selfadjoint operator; damped wave equation; number of eigenvalues in a horizontal strip},
language = {eng},
number = {2},
pages = {227-241},
publisher = {Taylor & Francis, Philadelphia},
title = {The spectrum of the damped wave operator for a bounded domain in .},
url = {http://eudml.org/doc/51262},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Asch, Mark
AU - Lebeau, Gilles
TI - The spectrum of the damped wave operator for a bounded domain in .
JO - Experimental Mathematics
PY - 2003
PB - Taylor & Francis, Philadelphia
VL - 12
IS - 2
SP - 227
EP - 241
LA - eng
KW - spectrum; non-selfadjoint operator; damped wave equation; number of eigenvalues in a horizontal strip
UR - http://eudml.org/doc/51262
ER -

Citations in EuDML Documents

top
  1. Pascal Hébrard, Emmanuel Humbert, The geometrical quantity in damped wave equations on a square
  2. Nalini Anantharaman, Matthieu Léautaud, Some decay properties for the damped wave equation on the torus
  3. Stéphane Nonnenmacher, Spectral theory of damped quantum chaotic systems
  4. Nicolas Burq, Gilles Lebeau, Injections de Sobolev probabilistes et applications
  5. Arnaud Münch, Ademir Fernando Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation
  6. Gabriel Rivière, Eigenmodes of the damped wave equation and small hyperbolic subsets

NotesEmbed ?

top

You must be logged in to post comments.