Stability of periodic waves in Hamiltonian PDEs
Sylvie Benzoni-Gavage[1]; Pascal Noble[1]; L. Miguel Rodrigues[1]
- [1] Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 bd 11 novembre 1918 F-69622 Villeurbanne cedex, France
Journées Équations aux dérivées partielles (2013)
- page 1-22
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- T. B. Benjamin. The stability of solitary waves. Proc. Roy. Soc. (London) Ser. A, 328:153–183, 1972. MR338584
- T. B. Benjamin. Impulse, flow force and variational principles. IMA J. Appl. Math., 32(1-3):3–68, 1984. Zbl0584.76001MR740456
- T. B. Benjamin and J. E. Feir. Disintegration of wave trains on deep water .1. Theory. Journal of Fluid Mechanics, 27(3):417–&, 1967. Zbl0144.47101
- S. Benzoni Gavage. Planar traveling waves in capillary fluids. Differential Integral Equations, 26(3-4):433Ð478, 2013. Zbl1289.76012MR3059170
- S. Benzoni-Gavage, P. Noble, and L. M. Rodrigues. Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids. March 2013. Zbl1308.35021MR3228473
- S. Benzoni-Gavage and L. M. Rodrigues. Co-periodic stability of periodic waves in some Hamiltonian PDEs. In preparation. Zbl1308.35021
- J. L. Bona and R. L. Sachs. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys., 118(1):15–29, 1988. Zbl0654.35018MR954673
- J. L. Bona, P. E. Souganidis, and W. A. Strauss. Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A, 411(1841):395–412, 1987. Zbl0648.76005MR897729
- J. Boussinesq. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl., 17(2):55–108, 1872.
- J. C. Bronski and M. A. Johnson. The modulational instability for a generalized Korteweg-de Vries equation. Arch. Ration. Mech. Anal., 197(2):357–400, 2010. Zbl1221.35325MR2660515
- B. Deconinck and T. Kapitula. On the orbital (in)stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations. 2010. Zbl1331.35305
- R. A. Gardner. On the structure of the spectra of periodic travelling waves. J. Math. Pures Appl. (9), 72(5):415–439, 1993. Zbl0831.35077MR1239098
- M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal., 74(1):160–197, 1987. Zbl0656.35122MR901236
- Mathew A. Johnson. Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg-de Vries equation. SIAM J. Math. Anal., 41(5):1921–1947, 2009. Zbl1200.35261MR2564200
- R. Kollár and P. D. Miller. Graphical Krein signature theory and Evans-Krein functions. 2012. Zbl1300.47078
- M. Oh and K. Zumbrun. Stability and asymptotic behavior of periodic traveling wave solutions of viscous conservation laws in several dimensions. Arch. Ration. Mech. Anal., 196(1):1–20, 2010. Zbl1197.35075MR2601067
- R.L. Pego and M.I. Weinstein. Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A, 340(1656):47–94, 1992. Zbl0776.35065MR1177566
- A. Pogan, A. Scheel, and K. Zumbrun. Quasi-gradient systems, modulational dichotomies, and stability of spatially periodic patterns. Diff. Int. Eqns., 26:383–432, 2013. Zbl1289.35030MR3059169
- D. Serre. Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis. Comm. Partial Differential Equations, 30(1-3):259–282, 2005. Zbl1131.35046MR2131054
- Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. Zbl1263.34002MR2961944