Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected
- [1] Leibniz Universitat Hannover Institute of Algebraic Geometry Gottfried Wilhelm Leibniz Universität Hannover Welfengarten 1 30167 Hannover (Allemagne)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 1, page 189-202
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topApostolov, Apostol. "Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected." Annales de l’institut Fourier 64.1 (2014): 189-202. <http://eudml.org/doc/275577>.
@article{Apostolov2014,
abstract = {We show that the moduli space of polarized irreducible symplectic manifolds of $K3^\{[n]\}$-type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of $K3^\{[n]\}$-type.},
affiliation = {Leibniz Universitat Hannover Institute of Algebraic Geometry Gottfried Wilhelm Leibniz Universität Hannover Welfengarten 1 30167 Hannover (Allemagne)},
author = {Apostolov, Apostol},
journal = {Annales de l’institut Fourier},
keywords = {number of connected components; monodromy invariant; irreducible symplectic manifolds},
language = {eng},
number = {1},
pages = {189-202},
publisher = {Association des Annales de l’institut Fourier},
title = {Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected},
url = {http://eudml.org/doc/275577},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Apostolov, Apostol
TI - Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 189
EP - 202
AB - We show that the moduli space of polarized irreducible symplectic manifolds of $K3^{[n]}$-type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of $K3^{[n]}$-type.
LA - eng
KW - number of connected components; monodromy invariant; irreducible symplectic manifolds
UR - http://eudml.org/doc/275577
ER -
References
top- Arnaud Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782 (1984) Zbl0537.53056MR730926
- F. Bogomolov, On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb. 22 (1974), 580-583 Zbl0304.32016MR338459
- V. Gritsenko, K. Hulek, G. K. Sankaran, Moduli of surfaces and Irreducible Symplectic Manifolds, (2010) Zbl1322.14004
- V. Gritsenko, K. Hulek, G. K. Sankaran, Moduli spaces of irreducible symplectic manifolds, Compos. Math. 146 (2010), 404-434 Zbl1230.14051MR2601632
- Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), 63-113 Zbl0953.53031MR1664696
- Daniel Huybrechts, Moduli spaces of hyperkähler manifolds and mirror symmetry, Intersection theory and moduli (2004), 185-247 (electronic), Abdus Salam Int. Cent. Theoret. Phys., Trieste Zbl1110.53034MR2172498
- Eyal Markman, Faithful Monodromy Invariant for Polarized Irreducible Symplectic Manifolds of -type, (2010) Zbl1184.14074
- Eyal Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry 8 (2011), 257-322, Springer, Heidelberg Zbl1229.14009MR2964480
- Eyal Markman, Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math. 53 (2013), 345-403 Zbl1271.14016MR3079308
- S. Mukai, On the moduli space of bundles on surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) 11 (1987), 341-413, Tata Inst. Fund. Res., Bombay Zbl0674.14023MR893604
- V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177 Zbl0408.10011MR525944
- Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a , J. Reine Angew. Math. 512 (1999), 49-117 Zbl0928.14029MR1703077
- Kieran G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), 435-505 Zbl1068.53058MR1966024
- Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1-42 Zbl0075.30401MR82175
- M. Verbitsky, A global Torelli theorem for hyperkähler manifolds, (2010)
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, 30 (1995), Springer-Verlag, Berlin Zbl0844.14004MR1368632
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.