Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected

Apostol Apostolov[1]

  • [1] Leibniz Universitat Hannover Institute of Algebraic Geometry Gottfried Wilhelm Leibniz Universität Hannover Welfengarten 1 30167 Hannover (Allemagne)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 189-202
  • ISSN: 0373-0956

Abstract

top
We show that the moduli space of polarized irreducible symplectic manifolds of K 3 [ n ] -type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of K 3 [ n ] -type.

How to cite

top

Apostolov, Apostol. "Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected." Annales de l’institut Fourier 64.1 (2014): 189-202. <http://eudml.org/doc/275577>.

@article{Apostolov2014,
abstract = {We show that the moduli space of polarized irreducible symplectic manifolds of $K3^\{[n]\}$-type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of $K3^\{[n]\}$-type.},
affiliation = {Leibniz Universitat Hannover Institute of Algebraic Geometry Gottfried Wilhelm Leibniz Universität Hannover Welfengarten 1 30167 Hannover (Allemagne)},
author = {Apostolov, Apostol},
journal = {Annales de l’institut Fourier},
keywords = {number of connected components; monodromy invariant; irreducible symplectic manifolds},
language = {eng},
number = {1},
pages = {189-202},
publisher = {Association des Annales de l’institut Fourier},
title = {Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected},
url = {http://eudml.org/doc/275577},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Apostolov, Apostol
TI - Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 189
EP - 202
AB - We show that the moduli space of polarized irreducible symplectic manifolds of $K3^{[n]}$-type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of $K3^{[n]}$-type.
LA - eng
KW - number of connected components; monodromy invariant; irreducible symplectic manifolds
UR - http://eudml.org/doc/275577
ER -

References

top
  1. Arnaud Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782 (1984) Zbl0537.53056MR730926
  2. F. Bogomolov, On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb. 22 (1974), 580-583 Zbl0304.32016MR338459
  3. V. Gritsenko, K. Hulek, G. K. Sankaran, Moduli of K 3 surfaces and Irreducible Symplectic Manifolds, (2010) Zbl1322.14004
  4. V. Gritsenko, K. Hulek, G. K. Sankaran, Moduli spaces of irreducible symplectic manifolds, Compos. Math. 146 (2010), 404-434 Zbl1230.14051MR2601632
  5. Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), 63-113 Zbl0953.53031MR1664696
  6. Daniel Huybrechts, Moduli spaces of hyperkähler manifolds and mirror symmetry, Intersection theory and moduli (2004), 185-247 (electronic), Abdus Salam Int. Cent. Theoret. Phys., Trieste Zbl1110.53034MR2172498
  7. Eyal Markman, Faithful Monodromy Invariant for Polarized Irreducible Symplectic Manifolds of K 3 [ n ] -type, (2010) Zbl1184.14074
  8. Eyal Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry 8 (2011), 257-322, Springer, Heidelberg Zbl1229.14009MR2964480
  9. Eyal Markman, Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math. 53 (2013), 345-403 Zbl1271.14016MR3079308
  10. S. Mukai, On the moduli space of bundles on K 3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) 11 (1987), 341-413, Tata Inst. Fund. Res., Bombay Zbl0674.14023MR893604
  11. V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177 Zbl0408.10011MR525944
  12. Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a K 3 , J. Reine Angew. Math. 512 (1999), 49-117 Zbl0928.14029MR1703077
  13. Kieran G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), 435-505 Zbl1068.53058MR1966024
  14. Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1-42 Zbl0075.30401MR82175
  15. M. Verbitsky, A global Torelli theorem for hyperkähler manifolds, (2010) 
  16. Eckart Viehweg, Quasi-projective moduli for polarized manifolds, 30 (1995), Springer-Verlag, Berlin Zbl0844.14004MR1368632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.