Bounds on the denominators in the canonical bundle formula
- [1] IRMA, Université de Strasbourg et CNRS 7 rue René-Descartes 67084 Strasbourg Cedex France
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 5, page 1951-1969
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Ambro, The Adjunction Conjecture and its applications, (1999) MR2698988
- F. Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004), 229-255 Zbl1097.14029MR2153078
- W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, (1984), Springer Verlag Zbl1036.14016MR749574
- Flips for 3-folds and 4-folds, 35 (2007), CortiA.A. Zbl05175029MR2352762
- O. Fujino, S. Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), 167-188 Zbl1032.14014MR1863025
- X. Jiang, On the pluricanonical maps of varieties of intermediate Kodaira dimension, arXiv:1012.3817 (2012), 1-21 MR3063904
- Y. Kawamata, Subadjunction of log canonical divisors for a variety of codimension 2, Contemporary Mathematics 207 (1997), 79-88 Zbl0901.14004MR1462926
- Y. Kawamata, Subadjunction of log canonical divisors, II, Amer. J. Math. 120 (1998), 893-899 Zbl0919.14003MR1646046
- J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- Yu. G. Prokhorov, V. V. Shokurov, Towards the second theorem on complements, J. Algebraic Geom. 18 (2009), 151-199 Zbl1159.14020MR2448282
- G. T. Todorov, Effective log Iitaka fibrations for surfaces and threefolds, Manuscripta Math. 133 (2010), 183-195 Zbl1200.14032MR2672545