Derivation of Hartree’s theory for mean-field Bose gases

Mathieu Lewin[1]

  • [1] CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise, France.

Journées Équations aux dérivées partielles (2013)

  • page 1-21
  • ISSN: 0752-0360

Abstract

top
This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of N bosons with an interaction of intensity 1 / N (mean-field regime). In the limit N , we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these systems.

How to cite

top

Lewin, Mathieu. "Derivation of Hartree’s theory for mean-field Bose gases." Journées Équations aux dérivées partielles (2013): 1-21. <http://eudml.org/doc/275585>.

@article{Lewin2013,
abstract = {This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of $N$ bosons with an interaction of intensity $1/N$ (mean-field regime). In the limit $N\rightarrow \infty $, we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these systems.},
affiliation = {CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise, France.},
author = {Lewin, Mathieu},
journal = {Journées Équations aux dérivées partielles},
keywords = {Hartree theory; mean-field limit; Bose-Einstein condensation; quantum de Finetti theorem},
language = {eng},
pages = {1-21},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Derivation of Hartree’s theory for mean-field Bose gases},
url = {http://eudml.org/doc/275585},
year = {2013},
}

TY - JOUR
AU - Lewin, Mathieu
TI - Derivation of Hartree’s theory for mean-field Bose gases
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 21
AB - This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of $N$ bosons with an interaction of intensity $1/N$ (mean-field regime). In the limit $N\rightarrow \infty $, we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these systems.
LA - eng
KW - Hartree theory; mean-field limit; Bose-Einstein condensation; quantum de Finetti theorem
UR - http://eudml.org/doc/275585
ER -

References

top
  1. Amandine Aftalion, Vortices in Bose–Einstein Condensates, 67 (2006), Springer Zbl1129.82004MR2228356
  2. Amandine Aftalion, Xavier Blanc, Jean Dalibard, Vortex patterns in a fast rotating Bose-Einstein condensate, Phys. Rev. A 71 (2005) Zbl1174.35104
  3. Amandine Aftalion, Xavier Blanc, Francis Nier, Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal. 241 (2006), 661-702 Zbl1118.82004MR2271933
  4. Zied Ammari, Francis Nier, Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis, Annales Henri Poincaré 9 (2008), 1503-1574 Zbl1171.81014MR2465733
  5. Zied Ammari, Francis Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl. 95 (2011), 585-626 Zbl1251.81062MR2802894
  6. Volker Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys. 21 (1991), 139-149 Zbl0725.47049MR1093525
  7. Volker Bach, Roger Lewis, Elliott H. Lieb, Heinz Siedentop, On the number of bound states of a bosonic N -particle Coulomb system, Math. Z. 214 (1993), 441-459 Zbl0852.47036MR1245205
  8. Claude Bardos, François Golse, Norbert J. Mauser, Weak coupling limit of the N -particle Schrödinger equation, Methods Appl. Anal. 7 (2000), 275-293 Zbl1003.81027MR1869286
  9. R. Benguria, E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters 50 (1983), 1771-1774 
  10. N. N. Bogoliubov, On the Theory of Superfluidity, J. Phys. (USSR) 11 (1947) 
  11. F. Calogero, Solution of the one-dimensional N -body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys. 12 (1971), 419-436 Zbl1002.70558MR280103
  12. F. Calogero, C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys. 10 (1969), 562-569 MR339719
  13. Gustave Choquet, Lectures on analysis. Vol 2. Representation theory, (1969), W.A. Benjamin, Inc, New York Zbl0181.39602
  14. Matthias Christandl, Robert König, Graeme Mitchison, Renato Renner, One-and-a-half quantum de Finetti theorems, Comm. Math. Phys. 273 (2007), 473-498 Zbl1126.81032MR2318315
  15. H. D. Cornean, J. Derezinski, P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50 (2009) Zbl1216.82006MR2541168
  16. Bruno De Finetti, Funzione caratteristica di un fenomeno aleatorio, Atti della R. Accademia Nazionale dei Lincei (1931) Zbl57.0610.01
  17. Bruno de Finetti, La prévision : ses lois logiques, ses sources subjectives, Ann. Inst. H. Poincaré 7 (1937), 1-68 Zbl0017.07602MR1508036
  18. J. Dereziński, M. Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Annales Henri Poincaré (2014), 1-31 Zbl1305.82042
  19. P. Diaconis, D. Freedman, Finite exchangeable sequences, Ann. Probab. 8 (1980), 745-764 Zbl0434.60034MR577313
  20. E. B. Dynkin, Classes of equivalent random quantities, Uspehi Matem. Nauk (N.S.) 8 (1953), 125-130 Zbl0053.09807MR55601
  21. Alexander Elgart, László Erdős, Benjamin Schlein, Horng-Tzer Yau, Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Ration. Mech. Anal. 179 (2006), 265-283 Zbl1086.81035MR2209131
  22. Alexander Elgart, Benjamin Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), 500-545 Zbl1113.81032MR2290709
  23. L. Erdös, B. Schlein, H.-T. Yau, Ground-state energy of a low-density Bose gas: A second-order upper bound, Phys. Rev. A 78 (2008) 
  24. László Erdős, Benjamin Schlein, Horng-Tzer Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc. 22 (2009), 1099-1156 Zbl1207.82031MR2525781
  25. M. Fannes, H. Spohn, A. Verbeure, Equilibrium states for mean field models, J. Math. Phys. 21 (1980), 355-358 Zbl0445.46049MR558480
  26. Jürg Fröhlich, Antti Knowles, Simon Schwarz, On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys. 288 (2009), 1023-1059 Zbl1177.82016MR2504864
  27. J. Ginibre, G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Commun. Math. Phys. 66 (1979), 37-76 Zbl0443.35067MR530915
  28. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys. 1 (1960), 516-523 Zbl0098.21704MR128913
  29. Alessandro Giuliani, Robert Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys. 135 (2009), 915-934 Zbl1172.82006MR2548599
  30. Alex D. Gottlieb, Examples of bosonic de Finetti states over finite dimensional Hilbert spaces, J. Stat. Phys. 121 (2005), 497-509 Zbl1149.82308MR2185337
  31. Philip Grech, Robert Seiringer, The Excitation Spectrum for Weakly Interacting Bosons in a Trap, Comm. Math. Phys. 322 (2013), 559-591 Zbl1273.82007MR3077925
  32. D. R. Hartree, The wave-mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods., Proc. Camb. Phil. Soc. 24 (1928), 89-312 
  33. K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265-277 MR332046
  34. Edwin Hewitt, Leonard J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501 Zbl0066.29604MR76206
  35. Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A 16 (1977), 1782-1785 Zbl0699.35214MR471726
  36. R. L. Hudson, G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), 343-351 Zbl0304.60001MR397421
  37. Michael K.-H. Kiessling, The Hartree limit of Born’s ensemble for the ground state of a bosonic atom or ion, J. Math. Phys. 53 (2012) Zbl1286.81179MR2905805
  38. Antti Knowles, Peter Pickl, Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys. 298 (2010), 101-138 Zbl1213.81180MR2657816
  39. Mathieu Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal. 260 (2011), 3535-3595 Zbl1216.81180MR2781970
  40. Mathieu Lewin, Phan Thành Nam, Nicolas Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, Adv. Math. 254 (2014), 570-621 Zbl1316.81095
  41. Mathieu Lewin, Phan Thành Nam, Benjamin Schlein, Fluctuations around Hartree states in the mean-field regime, (2013) Zbl1329.81430
  42. Mathieu Lewin, Phan Thanh Nam, Sylvia Serfaty, Jan Philip Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. in press (2013) Zbl1318.82030
  43. Elliott H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2) 130 (1963), 1616-1624 Zbl0138.23002MR156631
  44. Elliott H. Lieb, Werner Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2) 130 (1963), 1605-1616 Zbl0138.23001MR156630
  45. Elliott H. Lieb, Robert Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys. 264 (2006), 505-537 Zbl1233.82004MR2215615
  46. Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, Jakob Yngvason, The mathematics of the Bose gas and its condensation, (2005), Birkhäuser Zbl1104.82012MR2143817
  47. Elliott H. Lieb, Jan Philip Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys. 217 (2001), 127-163 Zbl1042.82004MR1815028
  48. Elliott H. Lieb, Jan Philip Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys. 252 (2004), 485-534 Zbl1124.82303MR2104887
  49. Elliott H. Lieb, Walter E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics 155 (1984), 494-512 MR753345
  50. Elliott H. Lieb, Horng-Tzer Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys. 112 (1987), 147-174 Zbl0641.35065MR904142
  51. Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-149 Zbl0541.49009
  52. Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283 Zbl0704.49004
  53. Pierre-Louis Lions, Mean-Field games and applications, (2007) Zbl1156.91321
  54. D. Petz, G. A. Raggio, A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys. 121 (1989), 271-282 Zbl0682.46054MR985399
  55. P. Pickl, A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys. 97 (2011), 151-164 Zbl1242.81150MR2821235
  56. G. A. Raggio, R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta 62 (1989), 980-1003 Zbl0938.82501MR1034151
  57. Igor Rodnianski, Benjamin Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys. 291 (2009), 31-61 Zbl1186.82051MR2530155
  58. Robert Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys. 306 (2011), 565-578 Zbl1226.82039MR2824481
  59. Robert Seiringer, Jakob Yngvason, Valentin A Zagrebnov, Disordered Bose-Einstein condensates with interaction in one dimension, J. Stat. Mech. 2012 (2012) 
  60. Jan Philip Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys. 20 (1990), 165-172 Zbl0712.35075MR1065245
  61. Jan Philip Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys. 266 (2006), 797-818 Zbl1126.82006MR2238912
  62. Herbert Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys. 52 (1980), 569-615 Zbl0399.60082MR578142
  63. Erling Størmer, Symmetric states of infinite tensor products of C * -algebras, J. Functional Analysis 3 (1969), 48-68 Zbl0167.43403MR241992
  64. B. Sutherland, Quantum Many-Body Problem in One Dimension: Ground State, J. Mathematical Phys. 12 (1971), 246-250 
  65. B. Sutherland, Quantum Many-Body Problem in One Dimension: Thermodynamics, J. Mathematical Phys. 12 (1971), 251-256 
  66. M. van den Berg, J. T. Lewis, J. V. Pulé, The large deviation principle and some models of an interacting boson gas, Comm. Math. Phys. 118 (1988), 61-85 Zbl0679.76124MR954675
  67. R. F. Werner, Large deviations and mean-field quantum systems, Quantum probability & related topics (1992), 349-381, World Sci. Publ., River Edge, NJ Zbl0788.60126MR1186674
  68. Horng-Tzer Yau, Jun Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys. 136 (2009), 453-503 Zbl1200.82002MR2529681
  69. J. Yngvason, The interacting Bose gas: A continuing challenge, Phys. Particles Nuclei 41 (2010), 880-884 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.