Derivation of Hartree’s theory for mean-field Bose gases
- [1] CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise, France.
Journées Équations aux dérivées partielles (2013)
- page 1-21
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topLewin, Mathieu. "Derivation of Hartree’s theory for mean-field Bose gases." Journées Équations aux dérivées partielles (2013): 1-21. <http://eudml.org/doc/275585>.
@article{Lewin2013,
abstract = {This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of $N$ bosons with an interaction of intensity $1/N$ (mean-field regime). In the limit $N\rightarrow \infty $, we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these systems.},
affiliation = {CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise, France.},
author = {Lewin, Mathieu},
journal = {Journées Équations aux dérivées partielles},
keywords = {Hartree theory; mean-field limit; Bose-Einstein condensation; quantum de Finetti theorem},
language = {eng},
pages = {1-21},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Derivation of Hartree’s theory for mean-field Bose gases},
url = {http://eudml.org/doc/275585},
year = {2013},
}
TY - JOUR
AU - Lewin, Mathieu
TI - Derivation of Hartree’s theory for mean-field Bose gases
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 21
AB - This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of $N$ bosons with an interaction of intensity $1/N$ (mean-field regime). In the limit $N\rightarrow \infty $, we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these systems.
LA - eng
KW - Hartree theory; mean-field limit; Bose-Einstein condensation; quantum de Finetti theorem
UR - http://eudml.org/doc/275585
ER -
References
top- Amandine Aftalion, Vortices in Bose–Einstein Condensates, 67 (2006), Springer Zbl1129.82004MR2228356
- Amandine Aftalion, Xavier Blanc, Jean Dalibard, Vortex patterns in a fast rotating Bose-Einstein condensate, Phys. Rev. A 71 (2005) Zbl1174.35104
- Amandine Aftalion, Xavier Blanc, Francis Nier, Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal. 241 (2006), 661-702 Zbl1118.82004MR2271933
- Zied Ammari, Francis Nier, Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis, Annales Henri Poincaré 9 (2008), 1503-1574 Zbl1171.81014MR2465733
- Zied Ammari, Francis Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl. 95 (2011), 585-626 Zbl1251.81062MR2802894
- Volker Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys. 21 (1991), 139-149 Zbl0725.47049MR1093525
- Volker Bach, Roger Lewis, Elliott H. Lieb, Heinz Siedentop, On the number of bound states of a bosonic -particle Coulomb system, Math. Z. 214 (1993), 441-459 Zbl0852.47036MR1245205
- Claude Bardos, François Golse, Norbert J. Mauser, Weak coupling limit of the -particle Schrödinger equation, Methods Appl. Anal. 7 (2000), 275-293 Zbl1003.81027MR1869286
- R. Benguria, E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters 50 (1983), 1771-1774
- N. N. Bogoliubov, On the Theory of Superfluidity, J. Phys. (USSR) 11 (1947)
- F. Calogero, Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys. 12 (1971), 419-436 Zbl1002.70558MR280103
- F. Calogero, C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys. 10 (1969), 562-569 MR339719
- Gustave Choquet, Lectures on analysis. Vol 2. Representation theory, (1969), W.A. Benjamin, Inc, New York Zbl0181.39602
- Matthias Christandl, Robert König, Graeme Mitchison, Renato Renner, One-and-a-half quantum de Finetti theorems, Comm. Math. Phys. 273 (2007), 473-498 Zbl1126.81032MR2318315
- H. D. Cornean, J. Derezinski, P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50 (2009) Zbl1216.82006MR2541168
- Bruno De Finetti, Funzione caratteristica di un fenomeno aleatorio, Atti della R. Accademia Nazionale dei Lincei (1931) Zbl57.0610.01
- Bruno de Finetti, La prévision : ses lois logiques, ses sources subjectives, Ann. Inst. H. Poincaré 7 (1937), 1-68 Zbl0017.07602MR1508036
- J. Dereziński, M. Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Annales Henri Poincaré (2014), 1-31 Zbl1305.82042
- P. Diaconis, D. Freedman, Finite exchangeable sequences, Ann. Probab. 8 (1980), 745-764 Zbl0434.60034MR577313
- E. B. Dynkin, Classes of equivalent random quantities, Uspehi Matem. Nauk (N.S.) 8 (1953), 125-130 Zbl0053.09807MR55601
- Alexander Elgart, László Erdős, Benjamin Schlein, Horng-Tzer Yau, Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Ration. Mech. Anal. 179 (2006), 265-283 Zbl1086.81035MR2209131
- Alexander Elgart, Benjamin Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), 500-545 Zbl1113.81032MR2290709
- L. Erdös, B. Schlein, H.-T. Yau, Ground-state energy of a low-density Bose gas: A second-order upper bound, Phys. Rev. A 78 (2008)
- László Erdős, Benjamin Schlein, Horng-Tzer Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc. 22 (2009), 1099-1156 Zbl1207.82031MR2525781
- M. Fannes, H. Spohn, A. Verbeure, Equilibrium states for mean field models, J. Math. Phys. 21 (1980), 355-358 Zbl0445.46049MR558480
- Jürg Fröhlich, Antti Knowles, Simon Schwarz, On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys. 288 (2009), 1023-1059 Zbl1177.82016MR2504864
- J. Ginibre, G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Commun. Math. Phys. 66 (1979), 37-76 Zbl0443.35067MR530915
- M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys. 1 (1960), 516-523 Zbl0098.21704MR128913
- Alessandro Giuliani, Robert Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys. 135 (2009), 915-934 Zbl1172.82006MR2548599
- Alex D. Gottlieb, Examples of bosonic de Finetti states over finite dimensional Hilbert spaces, J. Stat. Phys. 121 (2005), 497-509 Zbl1149.82308MR2185337
- Philip Grech, Robert Seiringer, The Excitation Spectrum for Weakly Interacting Bosons in a Trap, Comm. Math. Phys. 322 (2013), 559-591 Zbl1273.82007MR3077925
- D. R. Hartree, The wave-mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods., Proc. Camb. Phil. Soc. 24 (1928), 89-312
- K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265-277 MR332046
- Edwin Hewitt, Leonard J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501 Zbl0066.29604MR76206
- Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A 16 (1977), 1782-1785 Zbl0699.35214MR471726
- R. L. Hudson, G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), 343-351 Zbl0304.60001MR397421
- Michael K.-H. Kiessling, The Hartree limit of Born’s ensemble for the ground state of a bosonic atom or ion, J. Math. Phys. 53 (2012) Zbl1286.81179MR2905805
- Antti Knowles, Peter Pickl, Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys. 298 (2010), 101-138 Zbl1213.81180MR2657816
- Mathieu Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal. 260 (2011), 3535-3595 Zbl1216.81180MR2781970
- Mathieu Lewin, Phan Thành Nam, Nicolas Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, Adv. Math. 254 (2014), 570-621 Zbl1316.81095
- Mathieu Lewin, Phan Thành Nam, Benjamin Schlein, Fluctuations around Hartree states in the mean-field regime, (2013) Zbl1329.81430
- Mathieu Lewin, Phan Thanh Nam, Sylvia Serfaty, Jan Philip Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. in press (2013) Zbl1318.82030
- Elliott H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2) 130 (1963), 1616-1624 Zbl0138.23002MR156631
- Elliott H. Lieb, Werner Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2) 130 (1963), 1605-1616 Zbl0138.23001MR156630
- Elliott H. Lieb, Robert Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys. 264 (2006), 505-537 Zbl1233.82004MR2215615
- Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, Jakob Yngvason, The mathematics of the Bose gas and its condensation, (2005), Birkhäuser Zbl1104.82012MR2143817
- Elliott H. Lieb, Jan Philip Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys. 217 (2001), 127-163 Zbl1042.82004MR1815028
- Elliott H. Lieb, Jan Philip Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys. 252 (2004), 485-534 Zbl1124.82303MR2104887
- Elliott H. Lieb, Walter E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics 155 (1984), 494-512 MR753345
- Elliott H. Lieb, Horng-Tzer Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys. 112 (1987), 147-174 Zbl0641.35065MR904142
- Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-149 Zbl0541.49009
- Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283 Zbl0704.49004
- Pierre-Louis Lions, Mean-Field games and applications, (2007) Zbl1156.91321
- D. Petz, G. A. Raggio, A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys. 121 (1989), 271-282 Zbl0682.46054MR985399
- P. Pickl, A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys. 97 (2011), 151-164 Zbl1242.81150MR2821235
- G. A. Raggio, R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta 62 (1989), 980-1003 Zbl0938.82501MR1034151
- Igor Rodnianski, Benjamin Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys. 291 (2009), 31-61 Zbl1186.82051MR2530155
- Robert Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys. 306 (2011), 565-578 Zbl1226.82039MR2824481
- Robert Seiringer, Jakob Yngvason, Valentin A Zagrebnov, Disordered Bose-Einstein condensates with interaction in one dimension, J. Stat. Mech. 2012 (2012)
- Jan Philip Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys. 20 (1990), 165-172 Zbl0712.35075MR1065245
- Jan Philip Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys. 266 (2006), 797-818 Zbl1126.82006MR2238912
- Herbert Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys. 52 (1980), 569-615 Zbl0399.60082MR578142
- Erling Størmer, Symmetric states of infinite tensor products of -algebras, J. Functional Analysis 3 (1969), 48-68 Zbl0167.43403MR241992
- B. Sutherland, Quantum Many-Body Problem in One Dimension: Ground State, J. Mathematical Phys. 12 (1971), 246-250
- B. Sutherland, Quantum Many-Body Problem in One Dimension: Thermodynamics, J. Mathematical Phys. 12 (1971), 251-256
- M. van den Berg, J. T. Lewis, J. V. Pulé, The large deviation principle and some models of an interacting boson gas, Comm. Math. Phys. 118 (1988), 61-85 Zbl0679.76124MR954675
- R. F. Werner, Large deviations and mean-field quantum systems, Quantum probability & related topics (1992), 349-381, World Sci. Publ., River Edge, NJ Zbl0788.60126MR1186674
- Horng-Tzer Yau, Jun Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys. 136 (2009), 453-503 Zbl1200.82002MR2529681
- J. Yngvason, The interacting Bose gas: A continuing challenge, Phys. Particles Nuclei 41 (2010), 880-884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.