Higher symmetries of the Laplacian via quantization

Jean-Philippe Michel[1]

  • [1] University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Grand Duchy of Luxembourg University of Liège, Sart-Tilman, 12 grande traverse, B-4000 Liège, Belgium

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 4, page 1581-1609
  • ISSN: 0373-0956

Abstract

top
We develop a new approach, based on quantization methods, to study higher symmetries of invariant differential operators. We focus here on conformally invariant powers of the Laplacian over a conformally flat manifold and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, conformally equivariant quantization establishes a correspondence between the algebra of Hamiltonian symmetries of the null geodesic flow and the algebra of higher symmetries of the conformal Laplacian. Combined with a symplectic reduction, this leads to a quantization of the minimal nilpotent coadjoint orbit of the conformal group. The star-deformation of its algebra of regular functions is isomorphic to the algebra of higher symmetries of the conformal Laplacian. Both identify with the quotient of the universal envelopping algebra by the Joseph ideal.

How to cite

top

Michel, Jean-Philippe. "Higher symmetries of the Laplacian via quantization." Annales de l’institut Fourier 64.4 (2014): 1581-1609. <http://eudml.org/doc/275610>.

@article{Michel2014,
abstract = {We develop a new approach, based on quantization methods, to study higher symmetries of invariant differential operators. We focus here on conformally invariant powers of the Laplacian over a conformally flat manifold and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, conformally equivariant quantization establishes a correspondence between the algebra of Hamiltonian symmetries of the null geodesic flow and the algebra of higher symmetries of the conformal Laplacian. Combined with a symplectic reduction, this leads to a quantization of the minimal nilpotent coadjoint orbit of the conformal group. The star-deformation of its algebra of regular functions is isomorphic to the algebra of higher symmetries of the conformal Laplacian. Both identify with the quotient of the universal envelopping algebra by the Joseph ideal.},
affiliation = {University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Grand Duchy of Luxembourg University of Liège, Sart-Tilman, 12 grande traverse, B-4000 Liège, Belgium},
author = {Michel, Jean-Philippe},
journal = {Annales de l’institut Fourier},
keywords = {Symmetry algebra; Laplacian; Quantization; Conformal geometry; Minimal nilpotent orbit; Symplectic reduction; symmetry algebra; quantization; conformal geometry; minimal nilpotent orbit; symplectic reduction},
language = {eng},
number = {4},
pages = {1581-1609},
publisher = {Association des Annales de l’institut Fourier},
title = {Higher symmetries of the Laplacian via quantization},
url = {http://eudml.org/doc/275610},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Michel, Jean-Philippe
TI - Higher symmetries of the Laplacian via quantization
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1581
EP - 1609
AB - We develop a new approach, based on quantization methods, to study higher symmetries of invariant differential operators. We focus here on conformally invariant powers of the Laplacian over a conformally flat manifold and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, conformally equivariant quantization establishes a correspondence between the algebra of Hamiltonian symmetries of the null geodesic flow and the algebra of higher symmetries of the conformal Laplacian. Combined with a symplectic reduction, this leads to a quantization of the minimal nilpotent coadjoint orbit of the conformal group. The star-deformation of its algebra of regular functions is isomorphic to the algebra of higher symmetries of the conformal Laplacian. Both identify with the quotient of the universal envelopping algebra by the Joseph ideal.
LA - eng
KW - Symmetry algebra; Laplacian; Quantization; Conformal geometry; Minimal nilpotent orbit; Symplectic reduction; symmetry algebra; quantization; conformal geometry; minimal nilpotent orbit; symplectic reduction
UR - http://eudml.org/doc/275610
ER -

References

top
  1. D. Arnal, H. Benamor, B. Cahen, Algebraic deformation program on minimal nilpotent orbit, Lett. Math. Phys. 30 (1994), 241-250 Zbl0805.17009MR1267005
  2. A. Astashkevich, R. Brylinski, Non-local equivariant star product on the minimal nilpotent orbit, Adv. Math. 171 (2002), 86-102 Zbl1010.22021MR1933385
  3. C. Balleier, T. Wurzbacher, On the geometry and quantization of symplectic Howe pairs, Math. Zeit. 271 (2012), 577-591 Zbl1252.53097MR2917159
  4. X. Bekaert, M. Grigoriev, Manifestly conformal descriptions and higher symmetries of bosonic singletons, SIGMA 6 (2010) Zbl1241.70049MR2647317
  5. Xavier Bekaert, Elisa Meunier, Sergej Moroz, Symmetries and currents of the ideal and unitary fermi gases, JHEP 2012 (2012) Zbl1309.81177
  6. B. Binegar, R. Zierau, Unitarization of a singular representation of SO ( p , q ) , Comm. Math. Phys. 138 (1991), 245-258 Zbl0748.22009MR1108044
  7. B. D. Boe, D. H. Collingwood, A comparison theory for the structure of induced representations, J. Algebra 94 (1985), 511-545 Zbl0606.17007MR792968
  8. B. D. Boe, D. H. Collingwood, A comparison theory for the structure of induced representations. II, Math. Z. 190 (1985), 1-11 Zbl0562.17003MR793343
  9. F. Boniver, P. Mathonet, IFFT-equivariant quantizations, J. Geom. Phys. 56 (2006), 712-730 Zbl1145.53069MR2199289
  10. C. P. Boyer, E. G. Kalnins, W. Miller, Jr., Symmetry and separation of variables for the Helmholtz and Laplace equations, Nagoya Math. J. 60 (1976), 35-80 Zbl0314.33011MR393791
  11. David M. J. Calderbank, Tammo Diemer, Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67-103 Zbl0985.58002MR1856258
  12. A. Čap, J. Šilhan, Equivariant quantizations for AHS-structures, Adv. Math. 224 (2010), 1717-1734 Zbl1193.53034MR2646309
  13. Bruno Cordani, Conformal regularization of the Kepler problem, Comm. Math. Phys. 103 (1986), 403-413 Zbl0599.70014MR832916
  14. N. Dairbekov, V. Sharafutdinov, On conformal killing symmetric tensor fields on Riemannian manifolds, Sib. Adv. Math. 21 (2011), 1-41 Zbl1249.53050MR2682769
  15. Jacques Dixmier, Algèbres enveloppantes, (1974), Gauthiers-Villars, Paris Zbl0308.17007MR498737
  16. C. Duval, A. M. El Gradechi, V. Yu. Ovsienko, Projectively and conformally invariant star-products, Comm. Math. Phys. 244 (2004), 3-27 Zbl1048.53063MR2029948
  17. C. Duval, P. B. A. Lecomte, V. Yu. Ovsienko, Conformally equivariant quantization: existence and uniqueness, Ann. Inst. Fourier (Grenoble) 49 (1999), 1999-2029 Zbl0932.53048MR1738073
  18. C. Duval, V. Yu. Ovsienko, Conformally equivariant quantum Hamiltonians, Selecta Math. (N.S.) 7 (2001), 291-320 Zbl1018.53041MR1868301
  19. M. G. Eastwood, Higher symmetries of the Laplacian, Ann. of Math. (2) 161 (2005), 1645-1665 Zbl1091.53020MR2180410
  20. M. G. Eastwood, T. Leistner, Higher symmetries of the square of the Laplacian, Symmetries and overdetermined systems of partial differential equations 144 (2008), 319-338, Springer, New York Zbl1137.58014MR2384717
  21. M. G. Eastwood, J. W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys. 109 (1987), 207-228 Zbl0659.53047MR880414
  22. M. G. Eastwood, P. Somberg, V. Souček, Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras, J. Geom. Phys. 57 (2007), 2539-2546 Zbl1161.17006MR2369839
  23. R. Fioresi, M. A. Lledó, On the deformation quantization of coadjoint orbits of semisimple groups, Pacific J. Math. 198 (2001), 411-436 Zbl1053.53057MR1835516
  24. A. R. Gover, L. J. Peterson, Conformally invariant powers of the Laplacian, Q -curvature, and tractor calculus, Comm. Math. Phys. 235 (2003), 339-378 Zbl1022.58014MR1969732
  25. A. R. Gover, J. Šilhan, Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds, J. Math Phys. 53 (2012) Zbl1274.35063MR2798213
  26. R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570 Zbl0674.15021MR986027
  27. A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), 1-29 Zbl0346.17008MR404366
  28. T. Kobayashi, B. Ørsted, Analysis on the minimal representation of O ( p , q ) . I. Realization via conformal geometry, Adv. Math. 180 (2003), 486-512 Zbl1046.22004MR2020550
  29. T. Kobayashi, B. Ørsted, Analysis on the minimal representation of O ( p , q ) . III. Ultrahyperbolic equations on p - 1 , q - 1 , Adv. Math. 180 (2003), 551-595 Zbl1039.22005MR2020552
  30. P. B. A. Lecomte, V. Yu. Ovsienko, Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold, Compositio Math. 124 (2000), 95-110 Zbl0968.17007MR1797655
  31. J. Lepowsky, A generalization of the Bernstein–Gelfand–Gelfand resolution, J. Algebra 49 (1977), 496-511 Zbl0381.17006MR476813
  32. S. E. Loubon Djounga, Conformally invariant quantization at order three, Lett. Math. Phys. 64 (2003), 203-212 Zbl1056.53059MR2009258
  33. J.-Ph. Michel, Conformally equivariant quantization–a complete classification, SIGMA 8 (2012) Zbl1243.53133MR2942817
  34. J.-Ph. Michel, F. Radoux, J. Šilhan, Second order symmetries of the conformal Laplacian, SIGMA 10 (2014) Zbl1288.58014MR3210619
  35. A. G. Nikitin, A. I. Prilipko, Generalized Killing tensors and the symmetry of the Klein-Gordon-Fock equation, (1990) Zbl0736.35091MR1107804
  36. J.-P. Ortega, T.S. Ratiu, Momentum maps and Hamiltonian reduction, 222 (2004), Birkhäuser, Basel Zbl1241.53069MR2021152
  37. F. Radoux, An explicit formula for the natural and conformally invariant quantization, Lett. Math. Phys. 89 (2009), 249-263 Zbl1179.53014MR2551182
  38. J. Šilhan, Conformally invariant quantization - towards complete classification, Differ. geom. appl. 33, Supplement(0) (2014), 162-174 Zbl1282.53077MR3159956
  39. P. Somberg, Deformations of quadratic algebras, the Joseph ideal for classical Lie algebras, and special tensors, Symmetries and overdetermined systems of partial differential equations 144 (2008), 527-536, Springer, New York Zbl1182.17002MR2384730
  40. Z. Vlasáková, Symmetries of CR sub-Laplacian, (2012) 
  41. H. Weyl, The classical groups, (1997), Princeton University Press, Princeton, NJ Zbl1024.20501MR1488158
  42. J. A. Wolf, Representations associated to minimal co-adjoint orbits, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) 676 (1978), 329-349, Springer, Berlin Zbl0388.22008MR519619
  43. V. Wünsch, On conformally invariant differential operators, Math. Nachr. 129 (1986), 269-281 Zbl0619.53008MR864639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.