Invariant measures and long-time behavior for the Benjamin-Ono equation

Yu Deng[1]; Nikolay Tzvetkov[2]; Nicola Visciglia[3]

  • [1] Mathematics Department Princeton University Fine Hall Washington road, Princeton NJ 08544-4200, USA
  • [2] Institut Universitaire de France and Département de Mathématiques Université de Cergy-Pontoise 2, avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex, France
  • [3] Dipartimento di Matematica Università Degli Studi di Pisa Largo Bruno Pontecorvo 5 56127 Pisa, Italy

Journées Équations aux dérivées partielles (2014)

  • Volume: 2014, Issue: 17, page 1-14
  • ISSN: 0752-0360

Abstract

top
We summarize the main ideas in a series of papers ([20], [21], [22], [5]) devoted to the construction of invariant measures and to the long-time behavior of solutions of the periodic Benjamin-Ono equation.

How to cite

top

Deng, Yu, Tzvetkov, Nikolay, and Visciglia, Nicola. "Invariant measures and long-time behavior for the Benjamin-Ono equation." Journées Équations aux dérivées partielles 2014.17 (2014): 1-14. <http://eudml.org/doc/275611>.

@article{Deng2014,
abstract = {We summarize the main ideas in a series of papers ([20], [21], [22], [5]) devoted to the construction of invariant measures and to the long-time behavior of solutions of the periodic Benjamin-Ono equation.},
affiliation = {Mathematics Department Princeton University Fine Hall Washington road, Princeton NJ 08544-4200, USA; Institut Universitaire de France and Département de Mathématiques Université de Cergy-Pontoise 2, avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex, France; Dipartimento di Matematica Università Degli Studi di Pisa Largo Bruno Pontecorvo 5 56127 Pisa, Italy},
author = {Deng, Yu, Tzvetkov, Nikolay, Visciglia, Nicola},
journal = {Journées Équations aux dérivées partielles},
keywords = {Benjamin-Ono equation; torus; weighted Gaussian measures; long-time behavior},
language = {eng},
number = {17},
pages = {1-14},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Invariant measures and long-time behavior for the Benjamin-Ono equation},
url = {http://eudml.org/doc/275611},
volume = {2014},
year = {2014},
}

TY - JOUR
AU - Deng, Yu
AU - Tzvetkov, Nikolay
AU - Visciglia, Nicola
TI - Invariant measures and long-time behavior for the Benjamin-Ono equation
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
VL - 2014
IS - 17
SP - 1
EP - 14
AB - We summarize the main ideas in a series of papers ([20], [21], [22], [5]) devoted to the construction of invariant measures and to the long-time behavior of solutions of the periodic Benjamin-Ono equation.
LA - eng
KW - Benjamin-Ono equation; torus; weighted Gaussian measures; long-time behavior
UR - http://eudml.org/doc/275611
ER -

References

top
  1. L. Abdelouhab, J. Bona, M. Felland, J.-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D 40 (1989) 360-392. Zbl0699.35227MR1044731
  2. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), 209-262 Zbl0787.35098MR1215780
  3. N. Burq, F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008) 497-542. Zbl1148.35074MR2357995
  4. Y. Deng, Invariance of the Gibbs measure for the Benjamin-Ono equation. arxiv:1210.1542 
  5. Y. Deng, N. Tzvetkov, N. Visciglia, Invariant Measures and long time behavior for the Benjamin-Ono equation III, arXiv:1405.4954 Zbl06483741
  6. J. L. Lebowitz, H. A. Rose, E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), 657Ð687. Zbl1084.82506MR939505
  7. A. Ionescu, C. Kenig, Global well-posedness of the Benjamin-Ono equation in low regularity spaces, J. Amer. Math. Soc. 20 (2007) 753-798. Zbl1123.35055MR2291918
  8. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988) 891-907. Zbl0671.35066MR951744
  9. C. Kenig, K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003) 879-895. Zbl1044.35072MR2025062
  10. H. Koch, N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in H s ( ) , Int. Math. Res. Not. 2003, n.26, 1449-1464. Zbl1039.35106MR1976047
  11. Y. Matsuno, Bilinear transformation method, Academic Press, 1984. Zbl0552.35001MR759718
  12. H.P. McKean, E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), 143-226. Zbl0339.34024MR427731
  13. L. Molinet, Global well-posendess in L 2 for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008) 635-685. Zbl1157.35001MR2418924
  14. L. Molinet, D. Pilod, The Cauchy problem of the Benjamin-Ono equation in L 2 revisited, arXiv:1007.1545v1 Zbl1273.35096MR2970711
  15. L. Molinet, J.-C. Saut, N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), 982-988. Zbl0999.35085MR1885293
  16. A. Nahmod, T. Oh, L. Rey-Bellet, G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. 14 (2012), 1275-1330. Zbl1251.35151MR2928851
  17. G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Diff. Int. Eq. 4 (1991) 527-542. Zbl0732.35038MR1097916
  18. T. Tao, Global well-posedness of the Benjamin-Ono equation in H 1 , J. Hyperbolic Diff. Equations, 1 (2004) 27-49. Zbl1055.35104MR2052470
  19. N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Relat. Fields 146 (2010) 481-514. Zbl1188.35183MR2574736
  20. N. Tzvetkov, N. Visciglia, Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation , Ann. Scient. Ec. Norm. Sup. 46 (2013) 249-299. Zbl1317.35208MR3112200
  21. N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation, Int. Math. Res. Not. 2013; doi: 10.1093/imrn/rnt094. Zbl1315.37051MR3257548
  22. N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation II, J. Math. Pures Appl. 2014; doi:10.1016/j.matpur.2014.03.009 Zbl1301.35141MR3257548
  23. P. Zhidkov, KdV and Nonlinear Schrödinger equations : qualitative theory, Lecture notes in Mathematics 1756, Springer, 2001. Zbl0987.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.