Effective finite generation for adjoint rings

Paolo Cascini[1]; De-Qi Zhang[2]

  • [1] Imperial College London Department of Mathematics 180 Queen’s Gate London SW7 2AZ (United Kingdom)
  • [2] National University of Singapore Department of Mathematics 2 Science Drive 2 Singapore 117543 (Singapore)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 127-144
  • ISSN: 0373-0956

Abstract

top
We describe a bound on the degree of the generators for some adjoint rings on surfaces and threefolds.

How to cite

top

Cascini, Paolo, and Zhang, De-Qi. "Effective finite generation for adjoint rings." Annales de l’institut Fourier 64.1 (2014): 127-144. <http://eudml.org/doc/275644>.

@article{Cascini2014,
abstract = {We describe a bound on the degree of the generators for some adjoint rings on surfaces and threefolds.},
affiliation = {Imperial College London Department of Mathematics 180 Queen’s Gate London SW7 2AZ (United Kingdom); National University of Singapore Department of Mathematics 2 Science Drive 2 Singapore 117543 (Singapore)},
author = {Cascini, Paolo, Zhang, De-Qi},
journal = {Annales de l’institut Fourier},
keywords = {birational geometry; minimal model program; log canonical ring},
language = {eng},
number = {1},
pages = {127-144},
publisher = {Association des Annales de l’institut Fourier},
title = {Effective finite generation for adjoint rings},
url = {http://eudml.org/doc/275644},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Cascini, Paolo
AU - Zhang, De-Qi
TI - Effective finite generation for adjoint rings
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 127
EP - 144
AB - We describe a bound on the degree of the generators for some adjoint rings on surfaces and threefolds.
LA - eng
KW - birational geometry; minimal model program; log canonical ring
UR - http://eudml.org/doc/275644
ER -

References

top
  1. F. Ambro, The moduli b -divisor of an lc-trivial fibration, Compos. Math. 141 (2005), 385-403 Zbl1094.14025MR2134273
  2. Caucher Birkar, Paolo Cascini, Christopher D. Hacon, James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468 Zbl1210.14019MR2601039
  3. Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/1968), 336-358 Zbl0219.14003MR222084
  4. Paolo Cascini, Vladimir Lazić, New outlook on the minimal model program, I, Duke Math. J. 161 (2012), 2415-2467 Zbl1261.14007MR2972461
  5. Jungkai A. Chen, Meng Chen, Explicit birational geometry of 3-folds of general type, II, J. Differential Geom. 86 (2010), 237-271 Zbl1218.14026MR2772551
  6. Jungkai A. Chen, Meng Chen, Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 365-394 Zbl1194.14060MR2667020
  7. Jungkai A. Chen, Christopher D. Hacon, Factoring 3-fold flips and divisorial contractions to curves, J. Reine Angew. Math. 657 (2011), 173-197 Zbl1230.14015MR2824787
  8. A. Corti, V. Lazić, New outlook on Mori theory, II, (2010) Zbl1273.14033
  9. M.L. Green, The canonical ring of a variety of general type, Duke Math. J. 49 (1982), 1087-1113 Zbl0607.14005MR683012
  10. Christopher D. Hacon, James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25 Zbl1121.14011MR2242631
  11. T. Hayakawa, Blowing ups of 3 -dimensional terminal singularities, Publ. Res. Inst. Math. Sci. 35 (1999), 515-570 Zbl0969.14008MR1710753
  12. T. Hayakawa, Blowing ups of 3-dimensional terminal singularities. II, Publ. Res. Inst. Math. Sci. 36 (2000), 423-456 Zbl1017.14006MR1781436
  13. Yujiro Kawamata, The minimal discrepancy of a 3 -fold terminal singularity, (1993) Zbl0857.14010
  14. Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), 893-899 Zbl0919.14003MR1646046
  15. János Kollár, Effective base point freeness, Math. Ann. 296 (1993), 595-605 Zbl0818.14002MR1233485
  16. János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003
  17. R. Lazarsfeld, Positivity in Algebraic Geometry. I, 48 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095471
  18. Shigefumi Mori, On 3 -dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66 Zbl0589.14005MR792770
  19. Y. Prokhorov, V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), 151-199 Zbl1159.14020MR2448282
  20. Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) 46 (1987), 345-414, Amer. Math. Soc., Providence, RI Zbl0634.14003MR927963
  21. Y.-T. Siu, Finite generation of canonical ring by analytic method, Sci. China Ser. A 51 (2008), 481-502 Zbl1153.32021MR2395400
  22. Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627
  23. G. Todorov, C. Xu, On Effective log Iitaka fibration for 3-folds and 4-folds, Algebra Number Theory 3 (2009), 697-710 Zbl1184.14023MR2579391
  24. E. Viehweg, D.-Q. Zhang, Effective Iitaka fibrations, J. Algebraic Geom. 18 (2009), 711-730 Zbl1177.14039MR2524596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.