Explicit birational geometry of threefolds of general type, I
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 3, page 365-394
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topChen, Jungkai A., and Chen, Meng. "Explicit birational geometry of threefolds of general type, I." Annales scientifiques de l'École Normale Supérieure 43.3 (2010): 365-394. <http://eudml.org/doc/272136>.
@article{Chen2010,
abstract = {Let $V$ be a complex nonsingular projective 3-fold of general type. We prove $P_\{12\}(V):=\dim H^0(V, 12K_V)>0$ and $P_\{m_0\}(V)>1$ for some positive integer $m_0\le 24$. A direct consequence is the birationality of the pluricanonical map $\varphi _m$ for all $m\ge 126$. Besides, the canonical volume $\text\{Vol\}(V)$ has a universal lower bound $\nu (3)\ge \frac\{1\}\{63\cdot 126^2\}$.},
author = {Chen, Jungkai A., Chen, Meng},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {3-folds; plurigenus},
language = {eng},
number = {3},
pages = {365-394},
publisher = {Société mathématique de France},
title = {Explicit birational geometry of threefolds of general type, I},
url = {http://eudml.org/doc/272136},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Chen, Jungkai A.
AU - Chen, Meng
TI - Explicit birational geometry of threefolds of general type, I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 3
SP - 365
EP - 394
AB - Let $V$ be a complex nonsingular projective 3-fold of general type. We prove $P_{12}(V):=\dim H^0(V, 12K_V)>0$ and $P_{m_0}(V)>1$ for some positive integer $m_0\le 24$. A direct consequence is the birationality of the pluricanonical map $\varphi _m$ for all $m\ge 126$. Besides, the canonical volume $\text{Vol}(V)$ has a universal lower bound $\nu (3)\ge \frac{1}{63\cdot 126^2}$.
LA - eng
KW - 3-folds; plurigenus
UR - http://eudml.org/doc/272136
ER -
References
top- [1] A. Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series 68, Cambridge Univ. Press, 1983. Zbl0512.14020MR732439
- [2] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. I.H.É.S. 42 (1973), 171–219. Zbl0259.14005MR318163
- [3] J. A. Chen & M. Chen, The canonical volume of 3-folds of general type with , J. Lond. Math. Soc.78 (2008), 693–706. Zbl1156.14009MR2456899
- [4] J. A. Chen, M. Chen & D.-Q. Zhang, The 5-canonical system on 3-folds of general type, J. reine angew. Math. 603 (2007), 165–181. Zbl1121.14029MR2312557
- [5] J. A. Chen & C. D. Hacon, Pluricanonical systems on irregular 3-folds of general type, Math. Z.255 (2007), 343–355. Zbl1195.14018MR2262735
- [6] M. Chen, Canonical stability of 3-folds of general type with , Internat. J. Math.14 (2003), 515–528. Zbl1070.14009MR1993794
- [7] M. Chen, On the -divisor method and its application, J. Pure Appl. Algebra191 (2004), 143–156. Zbl1049.14034MR2048311
- [8] M. Chen, A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann.337 (2007), 887–908. Zbl1124.14038MR2285742
- [9] M. Chen & K. Zuo, Complex projective 3-fold with non-negative canonical Euler-Poincaré characteristic, Comm. Anal. Geom.16 (2008), 159–182. Zbl1149.14034MR2411471
- [10] L. Ein & R. Lazarsfeld, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc.6 (1993), 875–903. Zbl0803.14004MR1207013
- [11] A. R. Fletcher, Contributions to Riemann-Roch on projective -folds with only canonical singularities and applications, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 221–231. Zbl0662.14026MR927958
- [12] A. R. Fletcher, Inverting Reid’s exact plurigenera formula, Math. Ann.284 (1989), 617–629. Zbl0661.14013MR1006376
- [13] C. D. Hacon & J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math.166 (2006), 1–25. Zbl1121.14011MR2242631
- [14] A. R. Iano-Fletcher, Working with weighted complete intersections, in Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser. 281, Cambridge Univ. Press, 2000, 101–173. Zbl0960.14027MR1798982
- [15] Y. Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann.261 (1982), 43–46. Zbl0476.14007MR675204
- [16] Y. Kawamata, On the plurigenera of minimal algebraic -folds with , Math. Ann.275 (1986), 539–546. Zbl0582.14015MR859328
- [17] Y. Kawamata, K. Matsuda & K. Matsuki, Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland, 1987, 283–360. Zbl0672.14006MR946243
- [18] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. 123 (1986), 11–42. Zbl0598.14015MR825838
- [19] J. Kollár & S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. Zbl0926.14003MR1658959
- [20] T. Luo, Global -forms on regular -folds of general type, Duke Math. J.71 (1993), 859–869. Zbl0838.14032MR1240606
- [21] M. Reid, Canonical -folds, in Journées de Géométrie Algébrique d’Angers, juillet 1979, Sijthoff & Noordhoff, 1980, 273–310. Zbl0451.14014MR605348
- [22] M. Reid, Minimal models of canonical -folds, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1, North-Holland, 1983, 131–180. Zbl0558.14028MR715649
- [23] M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 345–414. Zbl0634.14003MR927963
- [24] S. Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math.165 (2006), 551–587. Zbl1108.14031MR2242627
- [25] H. Tsuji, Pluricanonical systems of projective varieties of general type. I, Osaka J. Math. 43 (2006), 967–995. Zbl1142.14012MR2303558
- [26] E. Viehweg, Vanishing theorems, J. reine angew. Math. 335 (1982), 1–8. Zbl0485.32019MR667459
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.