Explicit birational geometry of threefolds of general type, I

Jungkai A. Chen; Meng Chen

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 3, page 365-394
  • ISSN: 0012-9593

Abstract

top
Let V be a complex nonsingular projective 3-fold of general type. We prove P 12 ( V ) : = dim H 0 ( V , 12 K V ) > 0 and P m 0 ( V ) > 1 for some positive integer m 0 24 . A direct consequence is the birationality of the pluricanonical map ϕ m for all m 126 . Besides, the canonical volume Vol ( V ) has a universal lower bound ν ( 3 ) 1 63 · 126 2 .

How to cite

top

Chen, Jungkai A., and Chen, Meng. "Explicit birational geometry of threefolds of general type, I." Annales scientifiques de l'École Normale Supérieure 43.3 (2010): 365-394. <http://eudml.org/doc/272136>.

@article{Chen2010,
abstract = {Let $V$ be a complex nonsingular projective 3-fold of general type. We prove $P_\{12\}(V):=\dim H^0(V, 12K_V)&gt;0$ and $P_\{m_0\}(V)&gt;1$ for some positive integer $m_0\le 24$. A direct consequence is the birationality of the pluricanonical map $\varphi _m$ for all $m\ge 126$. Besides, the canonical volume $\text\{Vol\}(V)$ has a universal lower bound $\nu (3)\ge \frac\{1\}\{63\cdot 126^2\}$.},
author = {Chen, Jungkai A., Chen, Meng},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {3-folds; plurigenus},
language = {eng},
number = {3},
pages = {365-394},
publisher = {Société mathématique de France},
title = {Explicit birational geometry of threefolds of general type, I},
url = {http://eudml.org/doc/272136},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Chen, Jungkai A.
AU - Chen, Meng
TI - Explicit birational geometry of threefolds of general type, I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 3
SP - 365
EP - 394
AB - Let $V$ be a complex nonsingular projective 3-fold of general type. We prove $P_{12}(V):=\dim H^0(V, 12K_V)&gt;0$ and $P_{m_0}(V)&gt;1$ for some positive integer $m_0\le 24$. A direct consequence is the birationality of the pluricanonical map $\varphi _m$ for all $m\ge 126$. Besides, the canonical volume $\text{Vol}(V)$ has a universal lower bound $\nu (3)\ge \frac{1}{63\cdot 126^2}$.
LA - eng
KW - 3-folds; plurigenus
UR - http://eudml.org/doc/272136
ER -

References

top
  1. [1] A. Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series 68, Cambridge Univ. Press, 1983. Zbl0512.14020MR732439
  2. [2] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. I.H.É.S. 42 (1973), 171–219. Zbl0259.14005MR318163
  3. [3] J. A. Chen & M. Chen, The canonical volume of 3-folds of general type with χ 0 , J. Lond. Math. Soc.78 (2008), 693–706. Zbl1156.14009MR2456899
  4. [4] J. A. Chen, M. Chen & D.-Q. Zhang, The 5-canonical system on 3-folds of general type, J. reine angew. Math. 603 (2007), 165–181. Zbl1121.14029MR2312557
  5. [5] J. A. Chen & C. D. Hacon, Pluricanonical systems on irregular 3-folds of general type, Math. Z.255 (2007), 343–355. Zbl1195.14018MR2262735
  6. [6] M. Chen, Canonical stability of 3-folds of general type with p g 3 , Internat. J. Math.14 (2003), 515–528. Zbl1070.14009MR1993794
  7. [7] M. Chen, On the -divisor method and its application, J. Pure Appl. Algebra191 (2004), 143–156. Zbl1049.14034MR2048311
  8. [8] M. Chen, A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann.337 (2007), 887–908. Zbl1124.14038MR2285742
  9. [9] M. Chen & K. Zuo, Complex projective 3-fold with non-negative canonical Euler-Poincaré characteristic, Comm. Anal. Geom.16 (2008), 159–182. Zbl1149.14034MR2411471
  10. [10] L. Ein & R. Lazarsfeld, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc.6 (1993), 875–903. Zbl0803.14004MR1207013
  11. [11] A. R. Fletcher, Contributions to Riemann-Roch on projective 3 -folds with only canonical singularities and applications, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 221–231. Zbl0662.14026MR927958
  12. [12] A. R. Fletcher, Inverting Reid’s exact plurigenera formula, Math. Ann.284 (1989), 617–629. Zbl0661.14013MR1006376
  13. [13] C. D. Hacon & J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math.166 (2006), 1–25. Zbl1121.14011MR2242631
  14. [14] A. R. Iano-Fletcher, Working with weighted complete intersections, in Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser. 281, Cambridge Univ. Press, 2000, 101–173. Zbl0960.14027MR1798982
  15. [15] Y. Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann.261 (1982), 43–46. Zbl0476.14007MR675204
  16. [16] Y. Kawamata, On the plurigenera of minimal algebraic 3 -folds with K 0 , Math. Ann.275 (1986), 539–546. Zbl0582.14015MR859328
  17. [17] Y. Kawamata, K. Matsuda & K. Matsuki, Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland, 1987, 283–360. Zbl0672.14006MR946243
  18. [18] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. 123 (1986), 11–42. Zbl0598.14015MR825838
  19. [19] J. Kollár & S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. Zbl0926.14003MR1658959
  20. [20] T. Luo, Global 2 -forms on regular 3 -folds of general type, Duke Math. J.71 (1993), 859–869. Zbl0838.14032MR1240606
  21. [21] M. Reid, Canonical 3 -folds, in Journées de Géométrie Algébrique d’Angers, juillet 1979, Sijthoff & Noordhoff, 1980, 273–310. Zbl0451.14014MR605348
  22. [22] M. Reid, Minimal models of canonical 3 -folds, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1, North-Holland, 1983, 131–180. Zbl0558.14028MR715649
  23. [23] M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 345–414. Zbl0634.14003MR927963
  24. [24] S. Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math.165 (2006), 551–587. Zbl1108.14031MR2242627
  25. [25] H. Tsuji, Pluricanonical systems of projective varieties of general type. I, Osaka J. Math. 43 (2006), 967–995. Zbl1142.14012MR2303558
  26. [26] E. Viehweg, Vanishing theorems, J. reine angew. Math. 335 (1982), 1–8. Zbl0485.32019MR667459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.