Exponentiations over the quantum algebra
Sonia L’Innocente[1]; Françoise Point[2]; Carlo Toffalori[3]
- [1] School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy
- [2] Institut de mathématique, Le Pentagone, Université de Mons, 20, place du Parc, B-7000 Mons, Belgium.
- [3] School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC) Italy
Confluentes Mathematici (2013)
- Volume: 5, Issue: 2, page 45-69
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topL’Innocente, Sonia, Point, Françoise, and Toffalori, Carlo. "Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$." Confluentes Mathematici 5.2 (2013): 45-69. <http://eudml.org/doc/275651>.
@article{L2013,
abstract = {We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra $U_q(sl_2(\mathbb\{C\}))$. We discuss two cases, according to whether the parameter $q$ is a root of unity. We show that the universal enveloping algebra of $sl_\{2\}(\mathbb\{C\})$ embeds in a non-principal ultraproduct of $U_q(sl_2(\mathbb\{C\}))$, where $q$ varies over the primitive roots of unity.},
affiliation = {School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy; Institut de mathématique, Le Pentagone, Université de Mons, 20, place du Parc, B-7000 Mons, Belgium.; School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC) Italy},
author = {L’Innocente, Sonia, Point, Françoise, Toffalori, Carlo},
journal = {Confluentes Mathematici},
keywords = {Quantum algebra; quantum plane; exponential map; ultraproduct; quantum algebra; universal enveloping algebra},
language = {eng},
number = {2},
pages = {45-69},
publisher = {Institut Camille Jordan},
title = {Exponentiations over the quantum algebra $U_\{q\}(sl_2(\mathbb\{C\}))$},
url = {http://eudml.org/doc/275651},
volume = {5},
year = {2013},
}
TY - JOUR
AU - L’Innocente, Sonia
AU - Point, Françoise
AU - Toffalori, Carlo
TI - Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 2
SP - 45
EP - 69
AB - We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra $U_q(sl_2(\mathbb{C}))$. We discuss two cases, according to whether the parameter $q$ is a root of unity. We show that the universal enveloping algebra of $sl_{2}(\mathbb{C})$ embeds in a non-principal ultraproduct of $U_q(sl_2(\mathbb{C}))$, where $q$ varies over the primitive roots of unity.
LA - eng
KW - Quantum algebra; quantum plane; exponential map; ultraproduct; quantum algebra; universal enveloping algebra
UR - http://eudml.org/doc/275651
ER -
References
top- C.C. Chang and H.J. Keisler. Model theory. North-Holland, 1973. Zbl0697.03022
- K.R. Goodearl and R.B.Jr. Warfield. An Introduction to Noncommutative Rings. London Math. Soc. Student Texts 16, Cambridge University Press, 1989. Zbl0679.16001MR1020298
- I. Herzog and S. L’Innocente. The nonstandard quantum plane. Ann. Pure Applied Logic 156:78–85, 2008. Zbl1158.03021MR2474442
- E. Hrushovski and B. Zilber. Zariski geometries. J. Amer. Math. Soc. 9:1–56, 1996. Zbl0843.03020MR1311822
- N. Jacobson. Structure of Rings. Colloquium Publications 37, Amer. Math. Soc., 1964. Zbl0073.02002MR222106
- J. Jantzen. Lectures on Quantum groups. Graduate Studies in Mathematics 9, Amer. Math. Soc., 1996. Zbl0842.17012MR1359532
- C. Kassel, Quantum groups. Graduate Texts in Mathematics 155, Springer, 1995. Zbl0808.17003MR1321145
- A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics, Springer, 1997. Zbl0891.17010MR1492989
- S. L’Innocente, A. Macintyre and F. Point. Exponentiations over the universal enveloping algebra of . Ann. Pure Applied Logic 161:1565–1580, 2010. Zbl1232.17023MR2674051
- A. Macintyre. Model theory of exponentials on Lie algebras. Math. Structures Comput. Sci. 18:189–204, 2008. Zbl1138.03030MR2459619
- M. Prest. Model theory and modules. London Math. Soc. Lecture Note Series 130, Cambridge University Press, 1987. Zbl0634.03025MR933092
- W. Rossmann. Lie groups: An introduction through linear groups. Oxford University Press, 2002. Zbl1096.22002MR1889121
- B. Zilber. A class of quantum Zariski geometries. In Model Theory with applications to algebra and analysis, I (Z. Chatzidakis, H.D. Macpherson, A. Pillay, A.J. Wilkie editors), pages 293–326. London Math. Soc. Lecture Note Series 349, Cambridge University Press, 2008. Zbl1153.03013MR2441385
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.