Exponentiations over the quantum algebra U q ( s l 2 ( ) )

Sonia L’Innocente[1]; Françoise Point[2]; Carlo Toffalori[3]

  • [1] School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy
  • [2] Institut de mathématique, Le Pentagone, Université de Mons, 20, place du Parc, B-7000 Mons, Belgium.
  • [3] School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC) Italy

Confluentes Mathematici (2013)

  • Volume: 5, Issue: 2, page 45-69
  • ISSN: 1793-7434

Abstract

top
We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra U q ( s l 2 ( ) ) . We discuss two cases, according to whether the parameter q is a root of unity. We show that the universal enveloping algebra of s l 2 ( ) embeds in a non-principal ultraproduct of U q ( s l 2 ( ) ) , where q varies over the primitive roots of unity.

How to cite

top

L’Innocente, Sonia, Point, Françoise, and Toffalori, Carlo. "Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$." Confluentes Mathematici 5.2 (2013): 45-69. <http://eudml.org/doc/275651>.

@article{L2013,
abstract = {We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra $U_q(sl_2(\mathbb\{C\}))$. We discuss two cases, according to whether the parameter $q$ is a root of unity. We show that the universal enveloping algebra of $sl_\{2\}(\mathbb\{C\})$ embeds in a non-principal ultraproduct of $U_q(sl_2(\mathbb\{C\}))$, where $q$ varies over the primitive roots of unity.},
affiliation = {School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy; Institut de mathématique, Le Pentagone, Université de Mons, 20, place du Parc, B-7000 Mons, Belgium.; School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC) Italy},
author = {L’Innocente, Sonia, Point, Françoise, Toffalori, Carlo},
journal = {Confluentes Mathematici},
keywords = {Quantum algebra; quantum plane; exponential map; ultraproduct; quantum algebra; universal enveloping algebra},
language = {eng},
number = {2},
pages = {45-69},
publisher = {Institut Camille Jordan},
title = {Exponentiations over the quantum algebra $U_\{q\}(sl_2(\mathbb\{C\}))$},
url = {http://eudml.org/doc/275651},
volume = {5},
year = {2013},
}

TY - JOUR
AU - L’Innocente, Sonia
AU - Point, Françoise
AU - Toffalori, Carlo
TI - Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 2
SP - 45
EP - 69
AB - We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra $U_q(sl_2(\mathbb{C}))$. We discuss two cases, according to whether the parameter $q$ is a root of unity. We show that the universal enveloping algebra of $sl_{2}(\mathbb{C})$ embeds in a non-principal ultraproduct of $U_q(sl_2(\mathbb{C}))$, where $q$ varies over the primitive roots of unity.
LA - eng
KW - Quantum algebra; quantum plane; exponential map; ultraproduct; quantum algebra; universal enveloping algebra
UR - http://eudml.org/doc/275651
ER -

References

top
  1. C.C. Chang and H.J. Keisler. Model theory. North-Holland, 1973. Zbl0697.03022
  2. K.R. Goodearl and R.B.Jr. Warfield. An Introduction to Noncommutative Rings. London Math. Soc. Student Texts 16, Cambridge University Press, 1989. Zbl0679.16001MR1020298
  3. I. Herzog and S. L’Innocente. The nonstandard quantum plane. Ann. Pure Applied Logic 156:78–85, 2008. Zbl1158.03021MR2474442
  4. E. Hrushovski and B. Zilber. Zariski geometries. J. Amer. Math. Soc. 9:1–56, 1996. Zbl0843.03020MR1311822
  5. N. Jacobson. Structure of Rings. Colloquium Publications 37, Amer. Math. Soc., 1964. Zbl0073.02002MR222106
  6. J. Jantzen. Lectures on Quantum groups. Graduate Studies in Mathematics 9, Amer. Math. Soc., 1996. Zbl0842.17012MR1359532
  7. C. Kassel, Quantum groups. Graduate Texts in Mathematics 155, Springer, 1995. Zbl0808.17003MR1321145
  8. A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics, Springer, 1997. Zbl0891.17010MR1492989
  9. S. L’Innocente, A. Macintyre and F. Point. Exponentiations over the universal enveloping algebra of s l 2 ( ) . Ann. Pure Applied Logic 161:1565–1580, 2010. Zbl1232.17023MR2674051
  10. A. Macintyre. Model theory of exponentials on Lie algebras. Math. Structures Comput. Sci. 18:189–204, 2008. Zbl1138.03030MR2459619
  11. M. Prest. Model theory and modules. London Math. Soc. Lecture Note Series 130, Cambridge University Press, 1987. Zbl0634.03025MR933092
  12. W. Rossmann. Lie groups: An introduction through linear groups. Oxford University Press, 2002. Zbl1096.22002MR1889121
  13. B. Zilber. A class of quantum Zariski geometries. In Model Theory with applications to algebra and analysis, I (Z. Chatzidakis, H.D. Macpherson, A. Pillay, A.J. Wilkie editors), pages 293–326. London Math. Soc. Lecture Note Series 349, Cambridge University Press, 2008. Zbl1153.03013MR2441385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.