Exponentiations over the quantum algebra
Sonia L’Innocente[1]; Françoise Point[2]; Carlo Toffalori[3]
- [1] School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy
- [2] Institut de mathématique, Le Pentagone, Université de Mons, 20, place du Parc, B-7000 Mons, Belgium.
- [3] School of Science and Technology, Division of Mathematics, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC) Italy
Confluentes Mathematici (2013)
- Volume: 5, Issue: 2, page 45-69
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topReferences
top- C.C. Chang and H.J. Keisler. Model theory. North-Holland, 1973. Zbl0697.03022
- K.R. Goodearl and R.B.Jr. Warfield. An Introduction to Noncommutative Rings. London Math. Soc. Student Texts 16, Cambridge University Press, 1989. Zbl0679.16001MR1020298
- I. Herzog and S. L’Innocente. The nonstandard quantum plane. Ann. Pure Applied Logic 156:78–85, 2008. Zbl1158.03021MR2474442
- E. Hrushovski and B. Zilber. Zariski geometries. J. Amer. Math. Soc. 9:1–56, 1996. Zbl0843.03020MR1311822
- N. Jacobson. Structure of Rings. Colloquium Publications 37, Amer. Math. Soc., 1964. Zbl0073.02002MR222106
- J. Jantzen. Lectures on Quantum groups. Graduate Studies in Mathematics 9, Amer. Math. Soc., 1996. Zbl0842.17012MR1359532
- C. Kassel, Quantum groups. Graduate Texts in Mathematics 155, Springer, 1995. Zbl0808.17003MR1321145
- A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics, Springer, 1997. Zbl0891.17010MR1492989
- S. L’Innocente, A. Macintyre and F. Point. Exponentiations over the universal enveloping algebra of . Ann. Pure Applied Logic 161:1565–1580, 2010. Zbl1232.17023MR2674051
- A. Macintyre. Model theory of exponentials on Lie algebras. Math. Structures Comput. Sci. 18:189–204, 2008. Zbl1138.03030MR2459619
- M. Prest. Model theory and modules. London Math. Soc. Lecture Note Series 130, Cambridge University Press, 1987. Zbl0634.03025MR933092
- W. Rossmann. Lie groups: An introduction through linear groups. Oxford University Press, 2002. Zbl1096.22002MR1889121
- B. Zilber. A class of quantum Zariski geometries. In Model Theory with applications to algebra and analysis, I (Z. Chatzidakis, H.D. Macpherson, A. Pillay, A.J. Wilkie editors), pages 293–326. London Math. Soc. Lecture Note Series 349, Cambridge University Press, 2008. Zbl1153.03013MR2441385