Fox pairings and generalized Dehn twists

Gwénaël Massuyeau[1]; Vladimir Turaev[2]

  • [1] IRMA, Université de Strasbourg & CNRS 7 rue René Descartes 67084 Strasbourg, France
  • [2] Department of Mathematics Indiana University Bloomington IN47405, USA

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2403-2456
  • ISSN: 0373-0956

Abstract

top
We introduce a notion of a Fox pairing in a group algebra and use Fox pairings to define automorphisms of the Malcev completions of groups. These automorphisms generalize to the algebraic setting the action of the Dehn twists in the group algebras of the fundamental groups of surfaces. This work is inspired by the Kawazumi–Kuno generalization of the Dehn twists to non-simple closed curves on surfaces.

How to cite

top

Massuyeau, Gwénaël, and Turaev, Vladimir. "Fox pairings and generalized Dehn twists." Annales de l’institut Fourier 63.6 (2013): 2403-2456. <http://eudml.org/doc/275652>.

@article{Massuyeau2013,
abstract = {We introduce a notion of a Fox pairing in a group algebra and use Fox pairings to define automorphisms of the Malcev completions of groups. These automorphisms generalize to the algebraic setting the action of the Dehn twists in the group algebras of the fundamental groups of surfaces. This work is inspired by the Kawazumi–Kuno generalization of the Dehn twists to non-simple closed curves on surfaces.},
affiliation = {IRMA, Université de Strasbourg & CNRS 7 rue René Descartes 67084 Strasbourg, France; Department of Mathematics Indiana University Bloomington IN47405, USA},
author = {Massuyeau, Gwénaël, Turaev, Vladimir},
journal = {Annales de l’institut Fourier},
keywords = {surface; mapping class group; Dehn twist; group; Malcev completion; Fox derivative; fundamental group; surface group automorphism; Malcev completion of a group},
language = {eng},
number = {6},
pages = {2403-2456},
publisher = {Association des Annales de l’institut Fourier},
title = {Fox pairings and generalized Dehn twists},
url = {http://eudml.org/doc/275652},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Massuyeau, Gwénaël
AU - Turaev, Vladimir
TI - Fox pairings and generalized Dehn twists
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2403
EP - 2456
AB - We introduce a notion of a Fox pairing in a group algebra and use Fox pairings to define automorphisms of the Malcev completions of groups. These automorphisms generalize to the algebraic setting the action of the Dehn twists in the group algebras of the fundamental groups of surfaces. This work is inspired by the Kawazumi–Kuno generalization of the Dehn twists to non-simple closed curves on surfaces.
LA - eng
KW - surface; mapping class group; Dehn twist; group; Malcev completion; Fox derivative; fundamental group; surface group automorphism; Malcev completion of a group
UR - http://eudml.org/doc/275652
ER -

References

top
  1. D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107 Zbl0136.44605MR214087
  2. S. Garoufalidis, J. Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, Graphs and patterns in mathematics and theoretical physics 73 (2005), 173-203, Amer. Math. Soc., Providence, RI Zbl1086.57013MR2131016
  3. W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302 Zbl0619.58021MR846929
  4. N. Habegger, Milnor, Johnson and the tree-level perturbative invariants 
  5. S. A. Jennings, The group ring of a class of infinite nilpotent groups, Canad. J. Math. 7 (1955), 169-187 Zbl0066.01302MR68540
  6. N. Kawazumi, Cohomological aspects of Magnus expansions 
  7. N. Kawazumi, Y. Kuno, Groupoid-theoretical methods in the mapping class groups of surfaces Zbl06541619
  8. N. Kawazumi, Y. Kuno, The logarithms of Dehn twists Zbl06411330
  9. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gel’fand Mathematical Seminars, 1990–1992 (1993), 173-187, Birkhäuser Boston, Boston, MA Zbl0821.58018MR1247289
  10. Y. Kuno, The generalized Dehn twist along a figure eight Zbl1282.57025
  11. W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, (1976), Dover Publications, Inc., New York Zbl0362.20023MR422434
  12. G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France 140 (2012), 101-161 Zbl1248.57009MR2903772
  13. S. Morita, Symplectic automorphism groups of nilpotent quotients of fundamental groups of surfaces, Groups of diffeomorphisms 52 (2008), 443-468, Math. Soc. Japan, Tokyo Zbl1166.57012MR2509720
  14. C. D. Papakyriakopoulos, Planar regular coverings of orientable closed surfaces, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox) (1975), 261-292, Princeton Univ. Press, Princeton, N.J. Zbl0325.55002MR388396
  15. B. Perron, A homotopic intersection theory on surfaces: applications to mapping class group and braids, Enseign. Math. (2) 52 (2006), 159-186 Zbl1161.57009MR2255532
  16. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295 Zbl0191.53702MR258031
  17. V. G. Turaev, Intersections of loops in two-dimensional manifolds, (Russian) Mat. Sb 106(148) (1978), 566-588 Zbl0384.57004MR507817
  18. V. G. Turaev, Multiplace generalizations of the Seifert form of a classical knot, (Russian) Mat. Sb 116(158) (1981), 370-397 Zbl0484.57002MR665689

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.