Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 1, page 101-161
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topMassuyeau, Gwénaël. "Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant." Bulletin de la Société Mathématique de France 140.1 (2012): 101-161. <http://eudml.org/doc/272698>.
@article{Massuyeau2012,
abstract = {Let $\Sigma $ be a compact connected oriented surface with one boundary component, and let $\pi $ be the fundamental group of $\Sigma $. The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of $\Sigma $, whose $k$-th term consists of the self-homeomorphisms of $\Sigma $ that act trivially at the level of the $k$-th nilpotent quotient of $\pi $. Morita defined a homomorphism from the $k$-th term of the Johnson filtration to the third homology group of the $k$-th nilpotent quotient of $\pi $.
In this paper, we replace groups by their Malcev Lie algebras and we study the “infinitesimal” version of the $k$-th Morita homomorphism, which is shown to correspond to the original version by a canonical isomorphism. We provide a diagrammatic description of the $k$-th infinitesimal Morita homomorphism and, given an expansion of the free group $\pi $ that is “symplectic” in some sense, we show how to compute it from Kawazumi’s “total Johnson map”.
Besides, we give a topological interpretation of the full tree-reduction of the LMO homomorphism, which is a diagrammatic representation of the Torelli group derived from the Le–Murakami–Ohtsuki invariant of $3$-manifolds. More precisely, a symplectic expansion of $\pi $ is constructed from the LMO invariant, and it is shown that the tree-level of the LMO homomorphism is equivalent to the total Johnson map induced by this specific expansion. It follows that the $k$-th infinitesimal Morita homomorphism coincides with the degree $[k,2k[$ part of the tree-reduction of the LMO homomorphism. Our results also apply to the monoid of homology cylinders over $\Sigma $.},
author = {Massuyeau, Gwénaël},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Torelli group; Johnson homomorphisms; Morita homomorphisms; Magnus expansion; Malcev Lie algebra; homology cylinder; finite-type invariant; LMO invariant},
language = {eng},
number = {1},
pages = {101-161},
publisher = {Société mathématique de France},
title = {Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant},
url = {http://eudml.org/doc/272698},
volume = {140},
year = {2012},
}
TY - JOUR
AU - Massuyeau, Gwénaël
TI - Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 1
SP - 101
EP - 161
AB - Let $\Sigma $ be a compact connected oriented surface with one boundary component, and let $\pi $ be the fundamental group of $\Sigma $. The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of $\Sigma $, whose $k$-th term consists of the self-homeomorphisms of $\Sigma $ that act trivially at the level of the $k$-th nilpotent quotient of $\pi $. Morita defined a homomorphism from the $k$-th term of the Johnson filtration to the third homology group of the $k$-th nilpotent quotient of $\pi $.
In this paper, we replace groups by their Malcev Lie algebras and we study the “infinitesimal” version of the $k$-th Morita homomorphism, which is shown to correspond to the original version by a canonical isomorphism. We provide a diagrammatic description of the $k$-th infinitesimal Morita homomorphism and, given an expansion of the free group $\pi $ that is “symplectic” in some sense, we show how to compute it from Kawazumi’s “total Johnson map”.
Besides, we give a topological interpretation of the full tree-reduction of the LMO homomorphism, which is a diagrammatic representation of the Torelli group derived from the Le–Murakami–Ohtsuki invariant of $3$-manifolds. More precisely, a symplectic expansion of $\pi $ is constructed from the LMO invariant, and it is shown that the tree-level of the LMO homomorphism is equivalent to the total Johnson map induced by this specific expansion. It follows that the $k$-th infinitesimal Morita homomorphism coincides with the degree $[k,2k[$ part of the tree-reduction of the LMO homomorphism. Our results also apply to the monoid of homology cylinders over $\Sigma $.
LA - eng
KW - Torelli group; Johnson homomorphisms; Morita homomorphisms; Magnus expansion; Malcev Lie algebra; homology cylinder; finite-type invariant; LMO invariant
UR - http://eudml.org/doc/272698
ER -
References
top- [1] D. Bar-Natan – « On the Vassiliev knot invariants », Topology34 (1995), p. 423–472. Zbl0898.57001MR1318886
- [2] —, « Vassiliev homotopy string link invariants », J. Knot Theory Ramifications4 (1995), p. 13–32. Zbl0878.57003MR1321289
- [3] D. Bar-Natan, S. Garoufalidis, L. Rozansky & D. P. Thurston – « The Aarhus integral of rational homology 3-spheres. I. A highly non trivial flat connection on », Selecta Math.8 (2002), p. 315–339. Zbl1012.57015MR1931167
- [4] —, « The Aarhus integral of rational homology 3-spheres. II. Invariance and universality », Selecta Math. (N.S.) 8 (2002), p. 341–371. Zbl1012.57016MR1931168
- [5] A. J. Bene, N. Kawazumi & R. C. Penner – « Canonical extensions of the Johnson homomorphisms to the Torelli groupoid », Adv. Math.221 (2009), p. 627–659. Zbl1206.32007MR2508933
- [6] N. Bourbaki – Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles, vol. 1349, Hermann, 1972. Zbl0244.22007MR573068
- [7] D. Cheptea, K. Habiro & G. Massuyeau – « A functorial LMO invariant for Lagrangian cobordisms », Geom. Topol.12 (2008), p. 1091–1170. Zbl1148.57017MR2403806
- [8] T. D. Cochran, A. Gerges & K. E. Orr – « Dehn surgery equivalence relations on 3-manifolds », Math. Proc. Cambridge Philos. Soc.131 (2001), p. 97–127. Zbl0984.57010MR1833077
- [9] M. B. Day – « Extending Johnson’s and Morita’s homomorphisms to the mapping class group », Algebr. Geom. Topol.7 (2007), p. 1297–1326. Zbl1181.57025MR2350283
- [10] S. Garoufalidis, M. Goussarov & M. Polyak – « Calculus of clovers and finite type invariants of 3-manifolds », Geom. Topol.5 (2001), p. 75–108. Zbl1066.57015MR1812435
- [11] S. Garoufalidis & J. Levine – « Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism », in Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., 2005, p. 173–203. Zbl1086.57013MR2131016
- [12] M. Goussarov – « Finite type invariants and -equivalence of -manifolds », C. R. Acad. Sci. Paris Sér. I Math.329 (1999), p. 517–522. Zbl0938.57013MR1715131
- [13] —, « Variations of knotted graphs. The geometric technique of -equivalence », Algebra i Analiz12 (2000), p. 79–125. Zbl0981.57006MR1793618
- [14] N. Habegger – « Milnor, Johnson, and tree level perturbative invariants », 2000, preprint http://www.math.sciences.univ-nantes.fr/~habegger/PS/john100300.ps. MR1835687
- [15] N. Habegger & G. Masbaum – « The Kontsevich integral and Milnor’s invariants », Topology39 (2000), p. 1253–1289. Zbl0964.57011MR1783857
- [16] K. Habiro – « Claspers and finite type invariants of links », Geom. Topol.4 (2000), p. 1–83. Zbl0941.57015MR1735632
- [17] A. Heap – « Bordism invariants of the mapping class group », Topology45 (2006), p. 851–886. Zbl1156.57017MR2248515
- [18] K. Igusa & K. E. Orr – « Links, pictures and the homology of nilpotent groups », Topology40 (2001), p. 1125–1166. Zbl1002.57012MR1867241
- [19] S. A. Jennings – « The group ring of a class of infinite nilpotent groups », Canad. J. Math.7 (1955), p. 169–187. Zbl0066.01302MR68540
- [20] D. Johnson – « A survey of the Torelli group », in Low-dimensional topology (San Francisco, Calif., 1981), Contemp. Math., vol. 20, Amer. Math. Soc., 1983, p. 165–179. Zbl0553.57002MR718141
- [21] M. I. Kargapolov & J. I. Merzljakov – Fundamentals of the theory of groups, Graduate Texts in Math., vol. 62, Springer, 1979. Zbl0549.20001MR551207
- [22] N. Kawazumi – « Cohomological aspects of Magnus expansions », 2005, preprint arXiv:math/0505497.
- [23] —, « Harmonic magnus expansion on the universal family of riemann surfaces », 2006, preprint arXiv:math/0603158. MR1953869
- [24] T. Kerler – « Towards an algebraic characterization of 3-dimensional cobordisms », in Diagrammatic morphisms and applications (San Francisco, CA, 2000), Contemp. Math., vol. 318, Amer. Math. Soc., 2003, p. 141–173. Zbl1168.57313MR1973515
- [25] M. Kontsevich – « Formal (non)commutative symplectic geometry », in The Gel ʼfand Mathematical Seminars,1990–1992, Birkhäuser, 1993, p. 173–187. Zbl0821.58018MR1247289
- [26] —, « Feynman diagrams and low-dimensional topology », in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, 1994, p. 97–121. Zbl0872.57001MR1341841
- [27] T. T. Q. Le, J. Murakami & T. Ohtsuki – « On a universal perturbative invariant of -manifolds », Topology37 (1998), p. 539–574. Zbl0897.57017MR1604883
- [28] J. Levine – « Addendum and correction to: “Homology cylinders: an enlargement of the mapping class group” », Algebr. Geom. Topol.2 (2002), p. 1197–1204. Zbl1065.57501MR1943338
- [29] —, « Labeled binary planar trees and quasi-Lie algebras », Algebr. Geom. Topol.6 (2006), p. 935–948. Zbl1144.57009MR2240921
- [30] X.-S. Lin – « Power series expansions and invariants of links », in Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., 1997, p. 184–202. Zbl0897.57006MR1470727
- [31] W. Magnus, A. Karrass & D. Solitar – Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York-London-Sydney, 1966. Zbl0138.25604MR207802
- [32] S. Morita – « Abelian quotients of subgroups of the mapping class group of surfaces », Duke Math. J.70 (1993), p. 699–726. Zbl0801.57011MR1224104
- [33] T. Ohtsuki – Quantum invariants, Series on Knots and Everything, vol. 29, World Scientific Publishing Co. Inc., 2002. Zbl0991.57001MR1881401
- [34] Ş. Papadima – « Finite determinacy phenomena for finitely presented groups », in Proceedings of the 2nd Gauss Symposium. Conference A: Mathematics and Theoretical Physics (Munich, 1993), Sympos. Gaussiana, de Gruyter, 1995, p. 507–528. Zbl0852.20023MR1352516
- [35] P. F. Pickel – « Rational cohomology of nilpotent groups and Lie algebras », Comm. Algebra6 (1978), p. 409–419. Zbl0403.20031MR491902
- [36] C. Praagman – « Iterations and logarithms of formal automorphisms », Aequationes Math.30 (1986), p. 151–160. Zbl0589.39007MR843657
- [37] D. Quillen – « On the associated graded ring of a group ring », J. Algebra10 (1968), p. 411–418. Zbl0192.35803MR231919
- [38] —, « Rational homotopy theory », Ann. of Math.90 (1969), p. 205–295. Zbl0191.53702MR258031
- [39] T. Sakasai – « Homology cylinders and the acyclic closure of a free group », Algebr. Geom. Topol.6 (2006), p. 603–631. Zbl1149.57001MR2220691
- [40] J. Stallings – « Homology and central series of groups », J. Algebra2 (1965), p. 170–181. Zbl0135.05201MR175956
- [41] A. A. Suslin & M. Wodzicki – « Excision in algebraic -theory », Ann. of Math.136 (1992), p. 51–122. Zbl0756.18008MR1173926
- [42] V. G. Turaev – « Nilpotent homotopy types of closed -manifolds », in Topology (Leningrad, 1982), Lecture Notes in Math., vol. 1060, Springer, 1984, p. 355–366. Zbl0564.57008MR770255
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.