Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant

Gwénaël Massuyeau

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 1, page 101-161
  • ISSN: 0037-9484

Abstract

top
Let Σ be a compact connected oriented surface with one boundary component, and let π be the fundamental group of Σ . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of Σ , whose k -th term consists of the self-homeomorphisms of Σ that act trivially at the level of the k -th nilpotent quotient of π . Morita defined a homomorphism from the k -th term of the Johnson filtration to the third homology group of the k -th nilpotent quotient of π . In this paper, we replace groups by their Malcev Lie algebras and we study the “infinitesimal” version of the k -th Morita homomorphism, which is shown to correspond to the original version by a canonical isomorphism. We provide a diagrammatic description of the k -th infinitesimal Morita homomorphism and, given an expansion of the free group π that is “symplectic” in some sense, we show how to compute it from Kawazumi’s “total Johnson map”. Besides, we give a topological interpretation of the full tree-reduction of the LMO homomorphism, which is a diagrammatic representation of the Torelli group derived from the Le–Murakami–Ohtsuki invariant of 3 -manifolds. More precisely, a symplectic expansion of π is constructed from the LMO invariant, and it is shown that the tree-level of the LMO homomorphism is equivalent to the total Johnson map induced by this specific expansion. It follows that the k -th infinitesimal Morita homomorphism coincides with the degree [ k , 2 k [ part of the tree-reduction of the LMO homomorphism. Our results also apply to the monoid of homology cylinders over Σ .

How to cite

top

Massuyeau, Gwénaël. "Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant." Bulletin de la Société Mathématique de France 140.1 (2012): 101-161. <http://eudml.org/doc/272698>.

@article{Massuyeau2012,
abstract = {Let $\Sigma $ be a compact connected oriented surface with one boundary component, and let $\pi $ be the fundamental group of $\Sigma $. The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of $\Sigma $, whose $k$-th term consists of the self-homeomorphisms of $\Sigma $ that act trivially at the level of the $k$-th nilpotent quotient of $\pi $. Morita defined a homomorphism from the $k$-th term of the Johnson filtration to the third homology group of the $k$-th nilpotent quotient of $\pi $. In this paper, we replace groups by their Malcev Lie algebras and we study the “infinitesimal” version of the $k$-th Morita homomorphism, which is shown to correspond to the original version by a canonical isomorphism. We provide a diagrammatic description of the $k$-th infinitesimal Morita homomorphism and, given an expansion of the free group $\pi $ that is “symplectic” in some sense, we show how to compute it from Kawazumi’s “total Johnson map”. Besides, we give a topological interpretation of the full tree-reduction of the LMO homomorphism, which is a diagrammatic representation of the Torelli group derived from the Le–Murakami–Ohtsuki invariant of $3$-manifolds. More precisely, a symplectic expansion of $\pi $ is constructed from the LMO invariant, and it is shown that the tree-level of the LMO homomorphism is equivalent to the total Johnson map induced by this specific expansion. It follows that the $k$-th infinitesimal Morita homomorphism coincides with the degree $[k,2k[$ part of the tree-reduction of the LMO homomorphism. Our results also apply to the monoid of homology cylinders over $\Sigma $.},
author = {Massuyeau, Gwénaël},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Torelli group; Johnson homomorphisms; Morita homomorphisms; Magnus expansion; Malcev Lie algebra; homology cylinder; finite-type invariant; LMO invariant},
language = {eng},
number = {1},
pages = {101-161},
publisher = {Société mathématique de France},
title = {Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant},
url = {http://eudml.org/doc/272698},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Massuyeau, Gwénaël
TI - Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 1
SP - 101
EP - 161
AB - Let $\Sigma $ be a compact connected oriented surface with one boundary component, and let $\pi $ be the fundamental group of $\Sigma $. The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of $\Sigma $, whose $k$-th term consists of the self-homeomorphisms of $\Sigma $ that act trivially at the level of the $k$-th nilpotent quotient of $\pi $. Morita defined a homomorphism from the $k$-th term of the Johnson filtration to the third homology group of the $k$-th nilpotent quotient of $\pi $. In this paper, we replace groups by their Malcev Lie algebras and we study the “infinitesimal” version of the $k$-th Morita homomorphism, which is shown to correspond to the original version by a canonical isomorphism. We provide a diagrammatic description of the $k$-th infinitesimal Morita homomorphism and, given an expansion of the free group $\pi $ that is “symplectic” in some sense, we show how to compute it from Kawazumi’s “total Johnson map”. Besides, we give a topological interpretation of the full tree-reduction of the LMO homomorphism, which is a diagrammatic representation of the Torelli group derived from the Le–Murakami–Ohtsuki invariant of $3$-manifolds. More precisely, a symplectic expansion of $\pi $ is constructed from the LMO invariant, and it is shown that the tree-level of the LMO homomorphism is equivalent to the total Johnson map induced by this specific expansion. It follows that the $k$-th infinitesimal Morita homomorphism coincides with the degree $[k,2k[$ part of the tree-reduction of the LMO homomorphism. Our results also apply to the monoid of homology cylinders over $\Sigma $.
LA - eng
KW - Torelli group; Johnson homomorphisms; Morita homomorphisms; Magnus expansion; Malcev Lie algebra; homology cylinder; finite-type invariant; LMO invariant
UR - http://eudml.org/doc/272698
ER -

References

top
  1. [1] D. Bar-Natan – « On the Vassiliev knot invariants », Topology34 (1995), p. 423–472. Zbl0898.57001MR1318886
  2. [2] —, « Vassiliev homotopy string link invariants », J. Knot Theory Ramifications4 (1995), p. 13–32. Zbl0878.57003MR1321289
  3. [3] D. Bar-Natan, S. Garoufalidis, L. Rozansky & D. P. Thurston – « The Aarhus integral of rational homology 3-spheres. I. A highly non trivial flat connection on S 3 », Selecta Math.8 (2002), p. 315–339. Zbl1012.57015MR1931167
  4. [4] —, « The Aarhus integral of rational homology 3-spheres. II. Invariance and universality », Selecta Math. (N.S.) 8 (2002), p. 341–371. Zbl1012.57016MR1931168
  5. [5] A. J. Bene, N. Kawazumi & R. C. Penner – « Canonical extensions of the Johnson homomorphisms to the Torelli groupoid », Adv. Math.221 (2009), p. 627–659. Zbl1206.32007MR2508933
  6. [6] N. Bourbaki – Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles, vol. 1349, Hermann, 1972. Zbl0244.22007MR573068
  7. [7] D. Cheptea, K. Habiro & G. Massuyeau – « A functorial LMO invariant for Lagrangian cobordisms », Geom. Topol.12 (2008), p. 1091–1170. Zbl1148.57017MR2403806
  8. [8] T. D. Cochran, A. Gerges & K. E. Orr – « Dehn surgery equivalence relations on 3-manifolds », Math. Proc. Cambridge Philos. Soc.131 (2001), p. 97–127. Zbl0984.57010MR1833077
  9. [9] M. B. Day – « Extending Johnson’s and Morita’s homomorphisms to the mapping class group », Algebr. Geom. Topol.7 (2007), p. 1297–1326. Zbl1181.57025MR2350283
  10. [10] S. Garoufalidis, M. Goussarov & M. Polyak – « Calculus of clovers and finite type invariants of 3-manifolds », Geom. Topol.5 (2001), p. 75–108. Zbl1066.57015MR1812435
  11. [11] S. Garoufalidis & J. Levine – « Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism », in Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., 2005, p. 173–203. Zbl1086.57013MR2131016
  12. [12] M. Goussarov – « Finite type invariants and n -equivalence of 3 -manifolds », C. R. Acad. Sci. Paris Sér. I Math.329 (1999), p. 517–522. Zbl0938.57013MR1715131
  13. [13] —, « Variations of knotted graphs. The geometric technique of n -equivalence », Algebra i Analiz12 (2000), p. 79–125. Zbl0981.57006MR1793618
  14. [14] N. Habegger – « Milnor, Johnson, and tree level perturbative invariants », 2000, preprint http://www.math.sciences.univ-nantes.fr/~habegger/PS/john100300.ps. MR1835687
  15. [15] N. Habegger & G. Masbaum – « The Kontsevich integral and Milnor’s invariants », Topology39 (2000), p. 1253–1289. Zbl0964.57011MR1783857
  16. [16] K. Habiro – « Claspers and finite type invariants of links », Geom. Topol.4 (2000), p. 1–83. Zbl0941.57015MR1735632
  17. [17] A. Heap – « Bordism invariants of the mapping class group », Topology45 (2006), p. 851–886. Zbl1156.57017MR2248515
  18. [18] K. Igusa & K. E. Orr – « Links, pictures and the homology of nilpotent groups », Topology40 (2001), p. 1125–1166. Zbl1002.57012MR1867241
  19. [19] S. A. Jennings – « The group ring of a class of infinite nilpotent groups », Canad. J. Math.7 (1955), p. 169–187. Zbl0066.01302MR68540
  20. [20] D. Johnson – « A survey of the Torelli group », in Low-dimensional topology (San Francisco, Calif., 1981), Contemp. Math., vol. 20, Amer. Math. Soc., 1983, p. 165–179. Zbl0553.57002MR718141
  21. [21] M. I. Kargapolov & J. I. Merzljakov – Fundamentals of the theory of groups, Graduate Texts in Math., vol. 62, Springer, 1979. Zbl0549.20001MR551207
  22. [22] N. Kawazumi – « Cohomological aspects of Magnus expansions », 2005, preprint arXiv:math/0505497. 
  23. [23] —, « Harmonic magnus expansion on the universal family of riemann surfaces », 2006, preprint arXiv:math/0603158. MR1953869
  24. [24] T. Kerler – « Towards an algebraic characterization of 3-dimensional cobordisms », in Diagrammatic morphisms and applications (San Francisco, CA, 2000), Contemp. Math., vol. 318, Amer. Math. Soc., 2003, p. 141–173. Zbl1168.57313MR1973515
  25. [25] M. Kontsevich – « Formal (non)commutative symplectic geometry », in The Gel ʼ fand Mathematical Seminars,1990–1992, Birkhäuser, 1993, p. 173–187. Zbl0821.58018MR1247289
  26. [26] —, « Feynman diagrams and low-dimensional topology », in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, 1994, p. 97–121. Zbl0872.57001MR1341841
  27. [27] T. T. Q. Le, J. Murakami & T. Ohtsuki – « On a universal perturbative invariant of 3 -manifolds », Topology37 (1998), p. 539–574. Zbl0897.57017MR1604883
  28. [28] J. Levine – « Addendum and correction to: “Homology cylinders: an enlargement of the mapping class group” », Algebr. Geom. Topol.2 (2002), p. 1197–1204. Zbl1065.57501MR1943338
  29. [29] —, « Labeled binary planar trees and quasi-Lie algebras », Algebr. Geom. Topol.6 (2006), p. 935–948. Zbl1144.57009MR2240921
  30. [30] X.-S. Lin – « Power series expansions and invariants of links », in Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., 1997, p. 184–202. Zbl0897.57006MR1470727
  31. [31] W. Magnus, A. Karrass & D. Solitar – Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York-London-Sydney, 1966. Zbl0138.25604MR207802
  32. [32] S. Morita – « Abelian quotients of subgroups of the mapping class group of surfaces », Duke Math. J.70 (1993), p. 699–726. Zbl0801.57011MR1224104
  33. [33] T. Ohtsuki – Quantum invariants, Series on Knots and Everything, vol. 29, World Scientific Publishing Co. Inc., 2002. Zbl0991.57001MR1881401
  34. [34] Ş. Papadima – « Finite determinacy phenomena for finitely presented groups », in Proceedings of the 2nd Gauss Symposium. Conference A: Mathematics and Theoretical Physics (Munich, 1993), Sympos. Gaussiana, de Gruyter, 1995, p. 507–528. Zbl0852.20023MR1352516
  35. [35] P. F. Pickel – « Rational cohomology of nilpotent groups and Lie algebras », Comm. Algebra6 (1978), p. 409–419. Zbl0403.20031MR491902
  36. [36] C. Praagman – « Iterations and logarithms of formal automorphisms », Aequationes Math.30 (1986), p. 151–160. Zbl0589.39007MR843657
  37. [37] D. Quillen – « On the associated graded ring of a group ring », J. Algebra10 (1968), p. 411–418. Zbl0192.35803MR231919
  38. [38] —, « Rational homotopy theory », Ann. of Math.90 (1969), p. 205–295. Zbl0191.53702MR258031
  39. [39] T. Sakasai – « Homology cylinders and the acyclic closure of a free group », Algebr. Geom. Topol.6 (2006), p. 603–631. Zbl1149.57001MR2220691
  40. [40] J. Stallings – « Homology and central series of groups », J. Algebra2 (1965), p. 170–181. Zbl0135.05201MR175956
  41. [41] A. A. Suslin & M. Wodzicki – « Excision in algebraic K -theory », Ann. of Math.136 (1992), p. 51–122. Zbl0756.18008MR1173926
  42. [42] V. G. Turaev – « Nilpotent homotopy types of closed 3 -manifolds », in Topology (Leningrad, 1982), Lecture Notes in Math., vol. 1060, Springer, 1984, p. 355–366. Zbl0564.57008MR770255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.