Nariya Kawazumi[1]; Yusuke Kuno[2]

  • [1] University of Tokyo Department of Mathematical Sciences 3-8-1 Komaba Meguro-ku Tokyo 153-8914 (Japan)
  • [2] Tsuda College Department of Mathematics 2-1-1 Tsuda-Machi, Kodaira-shi Tokyo 187-8577 (Japan)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-52
  • ISSN: 0373-0956

How to cite


Kawazumi, Nariya, and Kuno, Yusuke. "null." Annales de l’institut Fourier 0.0 (0): 1-52. <http://eudml.org/doc/275334>.

affiliation = {University of Tokyo Department of Mathematical Sciences 3-8-1 Komaba Meguro-ku Tokyo 153-8914 (Japan); Tsuda College Department of Mathematics 2-1-1 Tsuda-Machi, Kodaira-shi Tokyo 187-8577 (Japan)},
author = {Kawazumi, Nariya, Kuno, Yusuke},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-52},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275334},
volume = {0},
year = {0},

AU - Kawazumi, Nariya
AU - Kuno, Yusuke
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 52
LA - eng
UR - http://eudml.org/doc/275334
ER -


  1. Patricia Cahn, A generalization of the Turaev cobracket and the minimal self-intersection number of a curve on a surface, New York J. Math. 19 (2013), 253-283 Zbl1316.57016
  2. Patricia Cahn, Vladimir Chernov, Intersections of loops and the Andersen-Mattes-Reshetikhin algebra, J. Lond. Math. Soc. (2) 87 (2013), 785-801 Zbl1303.57019
  3. Moira Chas, Combinatorial Lie bialgebras of curves on surfaces, Topology 43 (2004), 543-568 Zbl1050.57014
  4. Moira Chas, Minimal intersection of curves on surfaces, Geom. Dedicata 144 (2010), 25-60 Zbl1186.57015
  5. Moira Chas, Fabiana Krongold, Algebraic characterization of simple closed curves via Turaev’s cobracket Zbl06563148
  6. Moira Chas, Fabiana Krongold, An algebraic characterization of simple closed curves on surfaces with boundary, J. Topol. Anal. 2 (2010), 395-417 Zbl1245.57021
  7. V. Chernov, Graded Poisson algebras on bordism groups of garlands and their applications 
  8. Thomas Church, Orbits of curves under the Johnson kernel, Amer. J. Math. 136 (2014), 943-994 Zbl1306.57016
  9. E. Enomote 
  10. Naoya Enomoto, Takao Satoh, New series in the Johnson cokernels of the mapping class groups of surfaces, Algebr. Geom. Topol. 14 (2014), 627-669 Zbl06272605
  11. William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302 Zbl0619.58021
  12. Richard Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597-651 Zbl0915.57001
  13. Dennis Johnson, A survey of the Torelli group, Low-dimensional topology (San Francisco, Calif., 1981) 20 (1983), 165-179, Amer. Math. Soc., Providence, RI Zbl0553.57002
  14. N. Kawazumi, Cohomological aspects of Magnus expansions 
  15. Nariya Kawazumi, Yusuke Kuno, Groupoid-theoretical methods in the mapping class groups of surfaces Zbl06541619
  16. Nariya Kawazumi, Yusuke Kuno, The logarithms of Dehn twists, Quantum Topol. 5 (2014), 347-423 Zbl06411330
  17. Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel fand Mathematical Seminars, 1990–1992 (1993), 173-187, Birkhäuser Boston, Boston, MA Zbl0821.58018
  18. Yusuke Kuno, A combinatorial construction of symplectic expansions, Proc. Amer. Math. Soc. 140 (2012), 1075-1083 Zbl1241.57025
  19. Yusuke Kuno, The generalized Dehn twist along a figure eight, J. Topol. Anal. 5 (2013), 271-295 Zbl1282.57025
  20. Gwénaël Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France 140 (2012), 101-161 Zbl1248.57009
  21. Gwénaël Massuyeau, Vladimir Turaev 
  22. Gwénaël Massuyeau, Vladimir Turaev, Fox pairings and generalized Dehn twists, Ann. Inst. Fourier (Grenoble) 63 (2013), 2403-2456 Zbl1297.57005
  23. Gwénaël Massuyeau, Vladimir Turaev, Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not. IMRN (2014), 1-64 Zbl1298.53085
  24. Shigeyuki Morita, On the structure and the homology of the Torelli group, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 147-150 Zbl0684.57006
  25. Shigeyuki Morita, Mapping class groups of surfaces and three-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (1991), 665-674, Math. Soc. Japan, Tokyo Zbl0743.57007
  26. Shigeyuki Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), 699-726 Zbl0801.57011
  27. Shigeyuki Morita, Cohomological structure of the mapping class group and beyond, Problems on mapping class groups and related topics 74 (2006), 329-354, Amer. Math. Soc., Providence, RI Zbl1304.57030
  28. C. D. Papakyriakopoulos, Planar regular coverings of orientable closed surfaces, Knots, groups, and -manifolds (Papers dedicated to the memory of R. H. Fox) (1975), 261-292. Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J. Zbl0325.55002
  29. Andrew Putman, The Johnson homomorphism and its kernel Zbl1157.57010
  30. Andrew Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007), 829-865 Zbl1157.57010
  31. Travis Schedler, A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. (2005), 725-760 Zbl1079.16028
  32. V. Turaev, Intersections of loops in two-dimensional manifolds, Mat. Sb. 106(148) (1978), 566-588 Zbl0384.57004
  33. Vladimir G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4) 24 (1991), 635-704 Zbl0758.57011

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.