[unknown]
Nariya Kawazumi[1]; Yusuke Kuno[2]
- [1] University of Tokyo Department of Mathematical Sciences 3-8-1 Komaba Meguro-ku Tokyo 153-8914 (Japan)
- [2] Tsuda College Department of Mathematics 2-1-1 Tsuda-Machi, Kodaira-shi Tokyo 187-8577 (Japan)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-52
- ISSN: 0373-0956
Access Full Article
topHow to cite
topKawazumi, Nariya, and Kuno, Yusuke. "null." Annales de l’institut Fourier 0.0 (0): 1-52. <http://eudml.org/doc/275334>.
@article{Kawazumi0,
affiliation = {University of Tokyo Department of Mathematical Sciences 3-8-1 Komaba Meguro-ku Tokyo 153-8914 (Japan); Tsuda College Department of Mathematics 2-1-1 Tsuda-Machi, Kodaira-shi Tokyo 187-8577 (Japan)},
author = {Kawazumi, Nariya, Kuno, Yusuke},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-52},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275334},
volume = {0},
year = {0},
}
TY - JOUR
AU - Kawazumi, Nariya
AU - Kuno, Yusuke
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 52
LA - eng
UR - http://eudml.org/doc/275334
ER -
References
top- Patricia Cahn, A generalization of the Turaev cobracket and the minimal self-intersection number of a curve on a surface, New York J. Math. 19 (2013), 253-283 Zbl1316.57016
- Patricia Cahn, Vladimir Chernov, Intersections of loops and the Andersen-Mattes-Reshetikhin algebra, J. Lond. Math. Soc. (2) 87 (2013), 785-801 Zbl1303.57019
- Moira Chas, Combinatorial Lie bialgebras of curves on surfaces, Topology 43 (2004), 543-568 Zbl1050.57014
- Moira Chas, Minimal intersection of curves on surfaces, Geom. Dedicata 144 (2010), 25-60 Zbl1186.57015
- Moira Chas, Fabiana Krongold, Algebraic characterization of simple closed curves via Turaev’s cobracket Zbl06563148
- Moira Chas, Fabiana Krongold, An algebraic characterization of simple closed curves on surfaces with boundary, J. Topol. Anal. 2 (2010), 395-417 Zbl1245.57021
- V. Chernov, Graded Poisson algebras on bordism groups of garlands and their applications
- Thomas Church, Orbits of curves under the Johnson kernel, Amer. J. Math. 136 (2014), 943-994 Zbl1306.57016
- E. Enomote
- Naoya Enomoto, Takao Satoh, New series in the Johnson cokernels of the mapping class groups of surfaces, Algebr. Geom. Topol. 14 (2014), 627-669 Zbl06272605
- William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302 Zbl0619.58021
- Richard Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597-651 Zbl0915.57001
- Dennis Johnson, A survey of the Torelli group, Low-dimensional topology (San Francisco, Calif., 1981) 20 (1983), 165-179, Amer. Math. Soc., Providence, RI Zbl0553.57002
- N. Kawazumi, Cohomological aspects of Magnus expansions
- Nariya Kawazumi, Yusuke Kuno, Groupoid-theoretical methods in the mapping class groups of surfaces Zbl06541619
- Nariya Kawazumi, Yusuke Kuno, The logarithms of Dehn twists, Quantum Topol. 5 (2014), 347-423 Zbl06411330
- Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel fand Mathematical Seminars, 1990–1992 (1993), 173-187, Birkhäuser Boston, Boston, MA Zbl0821.58018
- Yusuke Kuno, A combinatorial construction of symplectic expansions, Proc. Amer. Math. Soc. 140 (2012), 1075-1083 Zbl1241.57025
- Yusuke Kuno, The generalized Dehn twist along a figure eight, J. Topol. Anal. 5 (2013), 271-295 Zbl1282.57025
- Gwénaël Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France 140 (2012), 101-161 Zbl1248.57009
- Gwénaël Massuyeau, Vladimir Turaev
- Gwénaël Massuyeau, Vladimir Turaev, Fox pairings and generalized Dehn twists, Ann. Inst. Fourier (Grenoble) 63 (2013), 2403-2456 Zbl1297.57005
- Gwénaël Massuyeau, Vladimir Turaev, Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not. IMRN (2014), 1-64 Zbl1298.53085
- Shigeyuki Morita, On the structure and the homology of the Torelli group, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 147-150 Zbl0684.57006
- Shigeyuki Morita, Mapping class groups of surfaces and three-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (1991), 665-674, Math. Soc. Japan, Tokyo Zbl0743.57007
- Shigeyuki Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), 699-726 Zbl0801.57011
- Shigeyuki Morita, Cohomological structure of the mapping class group and beyond, Problems on mapping class groups and related topics 74 (2006), 329-354, Amer. Math. Soc., Providence, RI Zbl1304.57030
- C. D. Papakyriakopoulos, Planar regular coverings of orientable closed surfaces, Knots, groups, and -manifolds (Papers dedicated to the memory of R. H. Fox) (1975), 261-292. Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J. Zbl0325.55002
- Andrew Putman, The Johnson homomorphism and its kernel Zbl1157.57010
- Andrew Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007), 829-865 Zbl1157.57010
- Travis Schedler, A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. (2005), 725-760 Zbl1079.16028
- V. Turaev, Intersections of loops in two-dimensional manifolds, Mat. Sb. 106(148) (1978), 566-588 Zbl0384.57004
- Vladimir G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4) 24 (1991), 635-704 Zbl0758.57011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.