Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities
Ikuo Satake[1]; Atsushi Takahashi[2]
- [1] Faculty of Education, Kagawa University, 1-1 Saiwai-cho Takamatsu Kagawa, 760-8522, Japan
- [2] Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka, 560-0043, Japan
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2885-2907
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSatake, Ikuo, and Takahashi, Atsushi. "Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities." Annales de l’institut Fourier 61.7 (2011): 2885-2907. <http://eudml.org/doc/275655>.
@article{Satake2011,
abstract = {We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.},
affiliation = {Faculty of Education, Kagawa University, 1-1 Saiwai-cho Takamatsu Kagawa, 760-8522, Japan; Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka, 560-0043, Japan},
author = {Satake, Ikuo, Takahashi, Atsushi},
journal = {Annales de l’institut Fourier},
keywords = {a mirror symmetry; simple elliptic singularities; Frobenius manifolds; Gromov–Witten theory; weighted projective line; primitive forms; the invariant theory; an elliptic Weyl group; an eta product; mirror symmetry; Gromov-Witten theory; eta product},
language = {eng},
number = {7},
pages = {2885-2907},
publisher = {Association des Annales de l’institut Fourier},
title = {Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities},
url = {http://eudml.org/doc/275655},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Satake, Ikuo
AU - Takahashi, Atsushi
TI - Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2885
EP - 2907
AB - We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.
LA - eng
KW - a mirror symmetry; simple elliptic singularities; Frobenius manifolds; Gromov–Witten theory; weighted projective line; primitive forms; the invariant theory; an elliptic Weyl group; an eta product; mirror symmetry; Gromov-Witten theory; eta product
UR - http://eudml.org/doc/275655
ER -
References
top- D. Abramovich, T. Graber, A. Vistoli, Gromov–Witten theory of Deligne–Muford stacks, Amer. J. Math. 130 (2008), 1337-1398 Zbl1193.14070MR2450211
- W. Chen, Y. Ruan, Orbifold Gromov–Witten Theory, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 25-85, Amer. Math. Soc., Providence, RI Zbl1091.53058MR1950939
- B. Dubrovin, Geometry of 2d topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer, Berlin Zbl0841.58065MR1397274
- B. Dubrovin, Y. Zhang, Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation, Commun. Math. Phys. 198 (1998), 311-361 Zbl0923.58060MR1672512
- B. Dubrovin, Y. Zhang, Frobenius manifolds and Virasoro constraints, Selecta Math. (N.S.) 5 (1999), 423-466 Zbl0963.81066MR1740678
- W. Ebeling, A. Takahashi, Strange duality of weighted homogeneous polynomials, Compositio Math. 147 (2011), 1413-1433 Zbl1238.14029MR2834726
- H. Fan, T. Jarvis, Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory Zbl1310.32032
- M. Krawitz, Y. Shen, Landau-Ginzburg/Calabi-Yau Correspondence of all Genera for Elliptic Orbifold
- T. Milanov, Y. Ruan, Gromov-Witten theory of elliptic orbifold and quasimodular forms
- D. Mumford, Tata Lectures on Theta I, 28 (1983), Birkhäuser Zbl0509.14049MR688651
- M. Noumi, Y. Yamada, Notes on the flat structures associated with simple and simply elliptic singularities, Integrable Systems and Algebraic Geometry (1998), 373-383, World-Scientific Zbl0964.32025MR1672069
- Y. Ohyama, Differential relations of theta functions, Osaka J. Math. 32 (1995), 431-450 Zbl0864.34001MR1355752
- Y. Ohyama, Differential equations for modular forms of level three, Funkcial. Ekvac. 44 (2001), 377-389 Zbl1145.11310MR1893938
- P. Rossi, Gromov-Witten theory of orbicurves, the space of tri-polynomials and Symplectic Field Theory of Seifert fibrations Zbl1235.14053
- K. Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1982), 775-792 Zbl0523.32015MR656053
- K. Saito, Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ. 19 (1983), 1231-1264 Zbl0539.58003MR723468
- K. Saito, Extended Affine Root System II, Publ. RIMS, Kyoto Univ. 26 (1990), 15-78 Zbl0713.17014MR1053908
- K. Saito, Duality for regular systems of weights, Asian J. Math. 2 (1998), 983-1047 Zbl0963.32023MR1734136
- K. Saito, A. Takahashi, From Primitive Forms to Frobenius manifolds, 78 (2008), 31-48 Zbl1161.32013MR2483747
- I. Satake, Flat Structure and the Prepotential for the Elliptic Root System of Type , Topological field theory, primitive forms and related topics 160 (1998), 427-452, Birkhäuser Zbl0933.11026MR1653034
- I. Satake, Frobenius manifolds for elliptic root systems, Osaka J. Math. 17 (2010), 301-330 Zbl1191.53057MR2666136
- I. Strachan, Simple elliptic singularities: A note on their G-function Zbl1256.53056
- A. Takahashi, Weighted projective lines associated to regular systems of weights of dual type, Adv. Stud. Pure Math. 59 (2010), 371-388 Zbl1213.14075MR2683215
- K. Ueda, Homological mirror symmetry and simple elliptic singularities Zbl06291393
- E. Verlinde, N. P. Warner, Topological Landau-Ginzburg matter at , Physics Letters B 269 (1991), 96-102 MR1134056
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.