Todor Milanov[1]; Yefeng Shen[2]

  • [1] Kavli Institute for the Physics and Mathematics of the Universe (WPI) Todai Institutes for Advanced Study The University of Tokyo Kashiwa, Chiba 277-8583 (Japan)
  • [2] Department of Mathematics Stanford University Stanford, CA 94305 (USA)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-60
  • ISSN: 0373-0956

How to cite


Milanov, Todor, and Shen, Yefeng. "null." Annales de l’institut Fourier 0.0 (0): 1-60. <http://eudml.org/doc/275302>.

affiliation = {Kavli Institute for the Physics and Mathematics of the Universe (WPI) Todai Institutes for Advanced Study The University of Tokyo Kashiwa, Chiba 277-8583 (Japan); Department of Mathematics Stanford University Stanford, CA 94305 (USA)},
author = {Milanov, Todor, Shen, Yefeng},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-60},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275302},
volume = {0},
year = {0},

AU - Milanov, Todor
AU - Shen, Yefeng
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 60
LA - eng
UR - http://eudml.org/doc/275302
ER -


  1. Pedro Acosta, FJRW-Rings and Landau-Ginzburg mirror symmetry in two dimensions 
  2. V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston, Inc., Boston, MA 
  3. Per Berglund, Tristan Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), 377-391 Zbl1245.14039
  4. M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), 311-427 Zbl0815.53082
  5. Philip Candelas, Xenia C. de la Ossa, Paul S. Green, Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21-74 Zbl1098.32506
  6. Weimin Chen, Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 25-85, Amer. Math. Soc., Providence, RI Zbl1091.53058
  7. Alessandro Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and r th roots, Compos. Math. 144 (2008), 1461-1496 Zbl1166.14018
  8. Alessandro Chiodo, Hiroshi Iritani, Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127-216 Zbl1298.14042
  9. Alessandro Chiodo, Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117-165 Zbl1197.14043
  10. Alessandro Chiodo, Yongbin Ruan, A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011), 2803-2864 Zbl06193028
  11. Tom Coates, Hiroshi Iritani, On the Convergence of Gromov-Witten Potentials and Givental’s Formula Zbl1331.14053
  12. Kevin Costello, Si Li, Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model 
  13. Charles F. Doran, John W. Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi-Yau threefolds, Mirror symmetry. V 38 (2006), 517-537, Amer. Math. Soc., Providence, RI Zbl1116.14005
  14. Boris Dubrovin, Geometry of 2 D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer, Berlin Zbl0841.58065
  15. Huijun Fan, Tyler Jarvis, Yongbin Ruan, The Witten Equation and Its Virtual Fundamental Cycle Zbl1310.32032
  16. Huijun Fan, Tyler Jarvis, Yongbin Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), 1-106 Zbl1310.32032
  17. Huijun Fan, Yefeng Shen, Quantum ring of singularity X p + X Y q , Michigan Math. J. 62 (2013), 185-207 
  18. Swantje Gährs, Picard-Fuchs equations of special one-parameter families of invertible polynomials, Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds 67 (2013), 285-310, Springer, New York Zbl1302.14034
  19. Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), 613-663 Zbl0881.55006
  20. Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, 645 Zbl1008.53072
  21. Alexander B. Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices (2001), 1265-1286 Zbl1074.14532
  22. Claus Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press, Cambridge Zbl1023.14018
  23. M.-x. Huang, A. Klemm, S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Homological mirror symmetry 757 (2009), 45-102, Springer, Berlin Zbl1166.81358
  24. Marc Krawitz, FJRW rings and Landau-Ginzburg Mirror Symmetry 
  25. Marc Krawitz, Yefeng Shen, Landau-Ginzburg/Calabi-Yau Correspondence of all Genera for Elliptic Orbifold 1  
  26. Si Li, On the quantum theory of Landau-Ginzburg B-model 
  27. Bong H. Lian, Kefeng Liu, Shing-Tung Yau, Mirror principle. I, Asian J. Math. 1 (1997), 729-763 Zbl0953.14026
  28. Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 47 (1999), American Mathematical Society, Providence, RI Zbl0952.14032
  29. Todor Milanov, Analyticity of the total ancestor potential in singularity theory, Adv. Math. 255 (2014), 217-241 Zbl1295.14051
  30. Todor Milanov, Yongbin Ruan, Gromov-Witten theory of elliptic orbifold 1 and quasi-modular forms 
  31. Todor Milanov, Yongbin Ruan, Yefeng Shen, Gromov–Witten theory and cycled-valued modular forms Zbl06379841
  32. Todor Milanov, Yefeng Shen, The modular group for the total ancestor potential of Fermat simple elliptic singularities, Commun. Number Theory Phys. 8 (2014), 329-368 Zbl06379841
  33. Yongbin Ruan, The Witten equation and the geometry of the Landau-Ginzburg model, String-Math 2011 85 (2012), 209-240, Amer. Math. Soc., Providence, RI 
  34. Kyoji Saito, On Periods of Primitive Integrals, I Zbl0523.32015
  35. Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142 
  36. Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325 
  37. Kyoji Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 775-792 (1982) Zbl0523.32015
  38. Kyoji Saito, Atsushi Takahashi, From primitive forms to Frobenius manifolds, From Hodge theory to integrability and TQFT tt*-geometry 78 (2008), 31-48, Amer. Math. Soc., Providence, RI Zbl1161.32013
  39. Ikuo Satake, Atsushi Takahashi, Gromov-Witten invariants for mirror orbifolds of simple elliptic singularities, Ann. Inst. Fourier (Grenoble) 61 (2011), 2885-2907 Zbl1294.14016
  40. Constantin Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525-588 Zbl1248.53074

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.