[unknown]
Todor Milanov[1]; Yefeng Shen[2]
- [1] Kavli Institute for the Physics and Mathematics of the Universe (WPI) Todai Institutes for Advanced Study The University of Tokyo Kashiwa, Chiba 277-8583 (Japan)
- [2] Department of Mathematics Stanford University Stanford, CA 94305 (USA)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-60
- ISSN: 0373-0956
Access Full Article
topHow to cite
topMilanov, Todor, and Shen, Yefeng. "null." Annales de l’institut Fourier 0.0 (0): 1-60. <http://eudml.org/doc/275302>.
@article{Milanov0,
affiliation = {Kavli Institute for the Physics and Mathematics of the Universe (WPI) Todai Institutes for Advanced Study The University of Tokyo Kashiwa, Chiba 277-8583 (Japan); Department of Mathematics Stanford University Stanford, CA 94305 (USA)},
author = {Milanov, Todor, Shen, Yefeng},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-60},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275302},
volume = {0},
year = {0},
}
TY - JOUR
AU - Milanov, Todor
AU - Shen, Yefeng
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 60
LA - eng
UR - http://eudml.org/doc/275302
ER -
References
top- Pedro Acosta, FJRW-Rings and Landau-Ginzburg mirror symmetry in two dimensions
- V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston, Inc., Boston, MA
- Per Berglund, Tristan Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), 377-391 Zbl1245.14039
- M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), 311-427 Zbl0815.53082
- Philip Candelas, Xenia C. de la Ossa, Paul S. Green, Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21-74 Zbl1098.32506
- Weimin Chen, Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 25-85, Amer. Math. Soc., Providence, RI Zbl1091.53058
- Alessandro Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and th roots, Compos. Math. 144 (2008), 1461-1496 Zbl1166.14018
- Alessandro Chiodo, Hiroshi Iritani, Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127-216 Zbl1298.14042
- Alessandro Chiodo, Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117-165 Zbl1197.14043
- Alessandro Chiodo, Yongbin Ruan, A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011), 2803-2864 Zbl06193028
- Tom Coates, Hiroshi Iritani, On the Convergence of Gromov-Witten Potentials and Givental’s Formula Zbl1331.14053
- Kevin Costello, Si Li, Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model
- Charles F. Doran, John W. Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi-Yau threefolds, Mirror symmetry. V 38 (2006), 517-537, Amer. Math. Soc., Providence, RI Zbl1116.14005
- Boris Dubrovin, Geometry of D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer, Berlin Zbl0841.58065
- Huijun Fan, Tyler Jarvis, Yongbin Ruan, The Witten Equation and Its Virtual Fundamental Cycle Zbl1310.32032
- Huijun Fan, Tyler Jarvis, Yongbin Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), 1-106 Zbl1310.32032
- Huijun Fan, Yefeng Shen, Quantum ring of singularity , Michigan Math. J. 62 (2013), 185-207
- Swantje Gährs, Picard-Fuchs equations of special one-parameter families of invertible polynomials, Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds 67 (2013), 285-310, Springer, New York Zbl1302.14034
- Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), 613-663 Zbl0881.55006
- Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, 645 Zbl1008.53072
- Alexander B. Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices (2001), 1265-1286 Zbl1074.14532
- Claus Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press, Cambridge Zbl1023.14018
- M.-x. Huang, A. Klemm, S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Homological mirror symmetry 757 (2009), 45-102, Springer, Berlin Zbl1166.81358
- Marc Krawitz, FJRW rings and Landau-Ginzburg Mirror Symmetry
- Marc Krawitz, Yefeng Shen, Landau-Ginzburg/Calabi-Yau Correspondence of all Genera for Elliptic Orbifold
- Si Li, On the quantum theory of Landau-Ginzburg B-model
- Bong H. Lian, Kefeng Liu, Shing-Tung Yau, Mirror principle. I, Asian J. Math. 1 (1997), 729-763 Zbl0953.14026
- Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 47 (1999), American Mathematical Society, Providence, RI Zbl0952.14032
- Todor Milanov, Analyticity of the total ancestor potential in singularity theory, Adv. Math. 255 (2014), 217-241 Zbl1295.14051
- Todor Milanov, Yongbin Ruan, Gromov-Witten theory of elliptic orbifold and quasi-modular forms
- Todor Milanov, Yongbin Ruan, Yefeng Shen, Gromov–Witten theory and cycled-valued modular forms Zbl06379841
- Todor Milanov, Yefeng Shen, The modular group for the total ancestor potential of Fermat simple elliptic singularities, Commun. Number Theory Phys. 8 (2014), 329-368 Zbl06379841
- Yongbin Ruan, The Witten equation and the geometry of the Landau-Ginzburg model, String-Math 2011 85 (2012), 209-240, Amer. Math. Soc., Providence, RI
- Kyoji Saito, On Periods of Primitive Integrals, I Zbl0523.32015
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142
- Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325
- Kyoji Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 775-792 (1982) Zbl0523.32015
- Kyoji Saito, Atsushi Takahashi, From primitive forms to Frobenius manifolds, From Hodge theory to integrability and TQFT tt*-geometry 78 (2008), 31-48, Amer. Math. Soc., Providence, RI Zbl1161.32013
- Ikuo Satake, Atsushi Takahashi, Gromov-Witten invariants for mirror orbifolds of simple elliptic singularities, Ann. Inst. Fourier (Grenoble) 61 (2011), 2885-2907 Zbl1294.14016
- Constantin Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525-588 Zbl1248.53074
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.