A generalization of the self-dual induction to every interval exchange transformation
- [1] Institut de Mathématiques de Marseille CNRS - UMR 7373 Case 907 - 163 av. de Luminy F13288 Marseille Cedex 9 (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 1947-2002
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFerenczi, Sébastien. "A generalization of the self-dual induction to every interval exchange transformation." Annales de l’institut Fourier 64.5 (2014): 1947-2002. <http://eudml.org/doc/275658>.
@article{Ferenczi2014,
abstract = {We generalize to all interval exchanges the induction algorithm defined by Ferenczi and Zamboni for a particular class. Each interval exchange corresponds to an infinite path in a graph whose vertices are certain unions of trees we call castle forests. We use it to describe those words obtained by coding trajectories and give an explicit representation of the system by Rokhlin towers. As an application, we build the first known example of a weakly mixing interval exchange outside the hyperelliptic and rotations Rauzy classes.},
affiliation = {Institut de Mathématiques de Marseille CNRS - UMR 7373 Case 907 - 163 av. de Luminy F13288 Marseille Cedex 9 (France)},
author = {Ferenczi, Sébastien},
journal = {Annales de l’institut Fourier},
keywords = {Dynamical systems; interval exchanges; symbolic dynamics; dynamical systems},
language = {eng},
number = {5},
pages = {1947-2002},
publisher = {Association des Annales de l’institut Fourier},
title = {A generalization of the self-dual induction to every interval exchange transformation},
url = {http://eudml.org/doc/275658},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Ferenczi, Sébastien
TI - A generalization of the self-dual induction to every interval exchange transformation
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1947
EP - 2002
AB - We generalize to all interval exchanges the induction algorithm defined by Ferenczi and Zamboni for a particular class. Each interval exchange corresponds to an infinite path in a graph whose vertices are certain unions of trees we call castle forests. We use it to describe those words obtained by coding trajectories and give an explicit representation of the system by Rokhlin towers. As an application, we build the first known example of a weakly mixing interval exchange outside the hyperelliptic and rotations Rauzy classes.
LA - eng
KW - Dynamical systems; interval exchanges; symbolic dynamics; dynamical systems
UR - http://eudml.org/doc/275658
ER -
References
top- Boris Adamczewski, Yann Bugeaud, Transcendence and Diophantine approximation, Combinatorics, automata and number theory 135 (2010), 410-451, Cambridge Univ. Press, Cambridge Zbl1271.11073MR2759111
- V. I. Arnolʼd, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), 91-192 Zbl0135.42701MR170705
- Artur Avila, Giovanni Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), 637-664 Zbl1136.37003MR2299743
- Michael Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, J. Analyse Math. 44 (1984/85), 77-96 Zbl0602.28008MR801288
- Michael Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J. 52 (1985), 723-752 Zbl0602.28009MR808101
- Michael Boshernitzan, A condition for weak mixing of induced IETs, Dynamical systems and group actions 567 (2012), 53-65, Amer. Math. Soc., Providence, RI Zbl1262.37006MR2931909
- J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math. 120 (2013), 105-130 Zbl06247065MR3095150
- Simone D. Cruz, Luiz Fernando C. da Rocha, A generalization of the Gauss map and some classical theorems on continued fractions, Nonlinearity 18 (2005), 505-525 Zbl1153.11320MR2122671
- Vincent Delecroix, Cardinality of Rauzy classes, Ann. Inst. Fourier (Grenoble) 63 (2013), 1651-1715 Zbl1285.05007MR3186505
- Vincent Delecroix, Divergent trajectories in the periodic wind-tree model, J. Mod. Dyn. 7 (2013), 1-29 Zbl1291.37048MR3071463
- Vincent Delecroix, C. Ulcigrai, Diagonal changes for surfaces in hyperelliptic components Zbl1326.37023
- Sébastien Ferenczi, Diagonal changes for every interval exchange transformation Zbl06424923
- Sébastien Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), 663-682 Zbl0858.68051MR1406427
- Sébastien Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35-65 Zbl0883.28014MR1436950
- Sébastien Ferenczi, Billiards in regular -gons and the self-dual induction, J. Lond. Math. Soc. (2) 87 (2013), 766-784 Zbl1283.37018MR3073675
- Sébastien Ferenczi, Combinatorial methods for interval exchange transformations, Southeast Asian Bull. Math. 37 (2013), 47-66 Zbl1289.37006MR3100024
- Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three interval exchange transformations. I. An arithmetic study, Ann. Inst. Fourier (Grenoble) 51 (2001), 861-901 Zbl1029.11036MR1849209
- Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories, J. Anal. Math. 89 (2003), 239-276 Zbl1130.37324MR1981920
- Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three-interval exchange transformations III: ergodic and spectral properties, J. Anal. Math. 93 (2004), 103-138 Zbl1094.37005MR2110326
- Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of -interval exchange transformations: induction, trajectories, and distance theorems, J. Anal. Math. 112 (2010), 289-328 Zbl1225.37003MR2763003
- Sébastien Ferenczi, Luiz Fernando C. da Rocha, A self-dual induction for three-interval exchange transformations, Dyn. Syst. 24 (2009), 393-412 Zbl1230.37005MR2561448
- Sébastien Ferenczi, Luca Q. Zamboni, Languages of -interval exchange transformations, Bull. Lond. Math. Soc. 40 (2008), 705-714 Zbl1147.37008MR2441143
- Sébastien Ferenczi, Luca Q. Zamboni, Eigenvalues and simplicity of interval exchange transformations, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 361-392 Zbl1237.37010MR2839454
- K. Inoue, H. Nakada, On the dual of Rauzy induction Zbl1268.37042
- A. B. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR 211 (1973), 775-778 Zbl0298.28013MR331438
- A. B. Katok, A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22 (1967), 81-106 Zbl0172.07202MR219697
- Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31 Zbl0278.28010MR357739
- Michael Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977), 188-196 Zbl0351.28012MR435353
- Maxim Kontsevich, Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), 631-678 Zbl1087.32010MR2000471
- Artur O. Lopes, Luiz Fernando C. da Rocha, Invariant measures for Gauss maps associated with interval exchange maps, Indiana Univ. Math. J. 43 (1994), 1399-1438 Zbl0840.28007MR1322625
- S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc. 18 (2005), 823-872 (electronic) Zbl1112.37002MR2163864
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), 169-200 Zbl0497.28012MR644018
- V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 1009-1011 Zbl0152.33404MR199347
- R. C. Penner, J. L. Harer, Combinatorics of train tracks, 125 (1992), Princeton University Press, Princeton, NJ Zbl0765.57001MR1144770
- Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018MR543205
- Fritz Schweiger, Ergodic theory of fibred systems and metric number theory, (1995), The Clarendon Press, Oxford University Press, New York Zbl0819.11027MR1419320
- Ya. G. Sinai, C. Ulcigrai, Weak mixing in interval exchange transformations of periodic type, Lett. Math. Phys. 74 (2005), 111-133 Zbl1105.37002MR2191950
- William A. Veech, Interval exchange transformations, J. Analyse Math. 33 (1978), 222-272 Zbl0455.28006MR516048
- William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242 Zbl0486.28014MR644019
- A. M. Vershik, A. N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Representation theory and dynamical systems 9 (1992), 185-204, Amer. Math. Soc., Providence, RI Zbl0770.28013MR1166202
- M. Viana, Dynamics of interval exchange maps and Teichmüller flows
- Jean-Christophe Yoccoz, Échanges d’intervalles, (2005)
- Anton Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), 325-370 Zbl0853.28007MR1393518
- Anton Zorich, Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic differentials, J. Mod. Dyn. 2 (2008), 139-185 Zbl1149.30033MR2366233
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.