A generalization of the self-dual induction to every interval exchange transformation

Sébastien Ferenczi[1]

  • [1] Institut de Mathématiques de Marseille CNRS - UMR 7373 Case 907 - 163 av. de Luminy F13288 Marseille Cedex 9 (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 1947-2002
  • ISSN: 0373-0956

Abstract

top
We generalize to all interval exchanges the induction algorithm defined by Ferenczi and Zamboni for a particular class. Each interval exchange corresponds to an infinite path in a graph whose vertices are certain unions of trees we call castle forests. We use it to describe those words obtained by coding trajectories and give an explicit representation of the system by Rokhlin towers. As an application, we build the first known example of a weakly mixing interval exchange outside the hyperelliptic and rotations Rauzy classes.

How to cite

top

Ferenczi, Sébastien. "A generalization of the self-dual induction to every interval exchange transformation." Annales de l’institut Fourier 64.5 (2014): 1947-2002. <http://eudml.org/doc/275658>.

@article{Ferenczi2014,
abstract = {We generalize to all interval exchanges the induction algorithm defined by Ferenczi and Zamboni for a particular class. Each interval exchange corresponds to an infinite path in a graph whose vertices are certain unions of trees we call castle forests. We use it to describe those words obtained by coding trajectories and give an explicit representation of the system by Rokhlin towers. As an application, we build the first known example of a weakly mixing interval exchange outside the hyperelliptic and rotations Rauzy classes.},
affiliation = {Institut de Mathématiques de Marseille CNRS - UMR 7373 Case 907 - 163 av. de Luminy F13288 Marseille Cedex 9 (France)},
author = {Ferenczi, Sébastien},
journal = {Annales de l’institut Fourier},
keywords = {Dynamical systems; interval exchanges; symbolic dynamics; dynamical systems},
language = {eng},
number = {5},
pages = {1947-2002},
publisher = {Association des Annales de l’institut Fourier},
title = {A generalization of the self-dual induction to every interval exchange transformation},
url = {http://eudml.org/doc/275658},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Ferenczi, Sébastien
TI - A generalization of the self-dual induction to every interval exchange transformation
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1947
EP - 2002
AB - We generalize to all interval exchanges the induction algorithm defined by Ferenczi and Zamboni for a particular class. Each interval exchange corresponds to an infinite path in a graph whose vertices are certain unions of trees we call castle forests. We use it to describe those words obtained by coding trajectories and give an explicit representation of the system by Rokhlin towers. As an application, we build the first known example of a weakly mixing interval exchange outside the hyperelliptic and rotations Rauzy classes.
LA - eng
KW - Dynamical systems; interval exchanges; symbolic dynamics; dynamical systems
UR - http://eudml.org/doc/275658
ER -

References

top
  1. Boris Adamczewski, Yann Bugeaud, Transcendence and Diophantine approximation, Combinatorics, automata and number theory 135 (2010), 410-451, Cambridge Univ. Press, Cambridge Zbl1271.11073MR2759111
  2. V. I. Arnolʼd, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), 91-192 Zbl0135.42701MR170705
  3. Artur Avila, Giovanni Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), 637-664 Zbl1136.37003MR2299743
  4. Michael Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, J. Analyse Math. 44 (1984/85), 77-96 Zbl0602.28008MR801288
  5. Michael Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J. 52 (1985), 723-752 Zbl0602.28009MR808101
  6. Michael Boshernitzan, A condition for weak mixing of induced IETs, Dynamical systems and group actions 567 (2012), 53-65, Amer. Math. Soc., Providence, RI Zbl1262.37006MR2931909
  7. J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math. 120 (2013), 105-130 Zbl06247065MR3095150
  8. Simone D. Cruz, Luiz Fernando C. da Rocha, A generalization of the Gauss map and some classical theorems on continued fractions, Nonlinearity 18 (2005), 505-525 Zbl1153.11320MR2122671
  9. Vincent Delecroix, Cardinality of Rauzy classes, Ann. Inst. Fourier (Grenoble) 63 (2013), 1651-1715 Zbl1285.05007MR3186505
  10. Vincent Delecroix, Divergent trajectories in the periodic wind-tree model, J. Mod. Dyn. 7 (2013), 1-29 Zbl1291.37048MR3071463
  11. Vincent Delecroix, C. Ulcigrai, Diagonal changes for surfaces in hyperelliptic components Zbl1326.37023
  12. Sébastien Ferenczi, Diagonal changes for every interval exchange transformation Zbl06424923
  13. Sébastien Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), 663-682 Zbl0858.68051MR1406427
  14. Sébastien Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35-65 Zbl0883.28014MR1436950
  15. Sébastien Ferenczi, Billiards in regular 2 n -gons and the self-dual induction, J. Lond. Math. Soc. (2) 87 (2013), 766-784 Zbl1283.37018MR3073675
  16. Sébastien Ferenczi, Combinatorial methods for interval exchange transformations, Southeast Asian Bull. Math. 37 (2013), 47-66 Zbl1289.37006MR3100024
  17. Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three interval exchange transformations. I. An arithmetic study, Ann. Inst. Fourier (Grenoble) 51 (2001), 861-901 Zbl1029.11036MR1849209
  18. Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories, J. Anal. Math. 89 (2003), 239-276 Zbl1130.37324MR1981920
  19. Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three-interval exchange transformations III: ergodic and spectral properties, J. Anal. Math. 93 (2004), 103-138 Zbl1094.37005MR2110326
  20. Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of K -interval exchange transformations: induction, trajectories, and distance theorems, J. Anal. Math. 112 (2010), 289-328 Zbl1225.37003MR2763003
  21. Sébastien Ferenczi, Luiz Fernando C. da Rocha, A self-dual induction for three-interval exchange transformations, Dyn. Syst. 24 (2009), 393-412 Zbl1230.37005MR2561448
  22. Sébastien Ferenczi, Luca Q. Zamboni, Languages of k -interval exchange transformations, Bull. Lond. Math. Soc. 40 (2008), 705-714 Zbl1147.37008MR2441143
  23. Sébastien Ferenczi, Luca Q. Zamboni, Eigenvalues and simplicity of interval exchange transformations, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 361-392 Zbl1237.37010MR2839454
  24. K. Inoue, H. Nakada, On the dual of Rauzy induction Zbl1268.37042
  25. A. B. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR 211 (1973), 775-778 Zbl0298.28013MR331438
  26. A. B. Katok, A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22 (1967), 81-106 Zbl0172.07202MR219697
  27. Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31 Zbl0278.28010MR357739
  28. Michael Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977), 188-196 Zbl0351.28012MR435353
  29. Maxim Kontsevich, Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), 631-678 Zbl1087.32010MR2000471
  30. Artur O. Lopes, Luiz Fernando C. da Rocha, Invariant measures for Gauss maps associated with interval exchange maps, Indiana Univ. Math. J. 43 (1994), 1399-1438 Zbl0840.28007MR1322625
  31. S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc. 18 (2005), 823-872 (electronic) Zbl1112.37002MR2163864
  32. Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), 169-200 Zbl0497.28012MR644018
  33. V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 1009-1011 Zbl0152.33404MR199347
  34. R. C. Penner, J. L. Harer, Combinatorics of train tracks, 125 (1992), Princeton University Press, Princeton, NJ Zbl0765.57001MR1144770
  35. Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018MR543205
  36. Fritz Schweiger, Ergodic theory of fibred systems and metric number theory, (1995), The Clarendon Press, Oxford University Press, New York Zbl0819.11027MR1419320
  37. Ya. G. Sinai, C. Ulcigrai, Weak mixing in interval exchange transformations of periodic type, Lett. Math. Phys. 74 (2005), 111-133 Zbl1105.37002MR2191950
  38. William A. Veech, Interval exchange transformations, J. Analyse Math. 33 (1978), 222-272 Zbl0455.28006MR516048
  39. William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242 Zbl0486.28014MR644019
  40. A. M. Vershik, A. N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Representation theory and dynamical systems 9 (1992), 185-204, Amer. Math. Soc., Providence, RI Zbl0770.28013MR1166202
  41. M. Viana, Dynamics of interval exchange maps and Teichmüller flows 
  42. Jean-Christophe Yoccoz, Échanges d’intervalles, (2005) 
  43. Anton Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), 325-370 Zbl0853.28007MR1393518
  44. Anton Zorich, Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic differentials, J. Mod. Dyn. 2 (2008), 139-185 Zbl1149.30033MR2366233

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.