Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 2, page 325-370
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. ARNOUX, G. LEVITT, Sur l'unique ergodicité des 1-formes fermées singulières, Inventiones Math., 85 (1986), 141-156 & 645-664. Zbl0577.58021MR87g:58004
- [2] P. ARNOUX, A. NOGUEIRA, Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Ann. scient. Éc. Norm. Sup., 4e série, 26 (1993), 645-664. Zbl0801.11036MR95h:11076
- [3] G. BENETTIN, I. GALGANI, A. GIORGILLI, J.-M. STRELCYN, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems ; a method for computing all of them. Part 1 : theory. Meccanica (1980), 9-20. Zbl0488.70015
- [4] A.B. KATOK, Invariant measures of flows on oriented surfaces, Soviet Math. Dokl., 14 (1973), 1104-1108. Zbl0298.28013
- [5] M. KEANE, Interval exchange transformations, Math. Z., 141, (1975), 25-31. Zbl0278.28010MR50 #10207
- [6] S.P. KERCKHOFF, Simplicial systems for interval exchange maps and measured foliations, Ergod. Th. & Dynam. Sys., 5 (1985), 257-271. Zbl0597.58024MR87g:58075
- [7] S. KERCKHOFF, H. MASUR, J. SMILLIE, Ergodicity of billiard flows and quadratic differentials, Annals of Math., 124 (1986), 293-311. Zbl0637.58010MR88f:58122
- [8] A. MAIER, On trajectories on closed orientable surfaces, Mat. Sbornik, 12 (1943), 71-84. Zbl0063.03856
- [9] H. MASUR, Interval exchange transformations and measured foliations, Annals of Math., 115-1 (1982), 169-200. Zbl0497.28012MR83e:28012
- [10] A. NOGUEIRA, D. RUDOLPH, Topological weakly mixing of interval exchange maps, to appear. Zbl0958.37010
- [11] A. NOGUEIRA, The 3-dimensional Poincaré continued fraction algorithm, preprint ENSL, 93 (1993), 1-25.
- [12] V.I. OSELEDETS, A Multiplicative Ergodic Theorem. Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. Zbl0236.93034
- [13] G. RAUZY, Echanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. Zbl0414.28018MR82m:10076
- [14] S. SCHWARTZMAN, Asymptotic cycles, Annals of Mathematics, 66 (1957), 270-284. Zbl0207.22603MR19,568i
- [15] W.A. VEECH, Projective swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic Theory and Dynamical Systems, Vol. I, in Progress in Mathematics, Birkhauser, Boston, 1981, 113-193.
- [16] W.A. VEECH, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics, 115 (1982), 201-242. Zbl0486.28014MR83g:28036b
- [17] W.A. VEECH, The metric theory of interval exchange transformations I. Generic spectral properties, Amer. Journal of Math., 106 (1984), 1331-1359. Zbl0631.28006MR87j:28024a
- [18] W.A. VEECH, The metric theory of interval exchange transformations II. Approximation by primitive interval exchanges, Amer. Journal of Math., 106 (1984), 1361-1387. Zbl0631.28007MR87j:28024b
- [19] W.A. VEECH, The Teichmüller geodesic flow, Annals of Mathematics, 124 (1986), 441-530. Zbl0658.32016MR88g:58153
- [20] W.A. VEECH, Moduli spaces of quadratic differentials, Journal d'Analyse Mathématique, 55 (1990), 117-171. Zbl0722.30032MR92e:32014
- [21] M. WOJTKOWSKI, Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 5 (1985), 145-161. Zbl0578.58033MR86h:58090
- [22] A. ZORICH, Asymptotic flag of an orientable measured foliation on a surface, in “Geometric Study of Foliations”, World Sci., 1994, 479-498.
Citations in EuDML Documents
top- Luca Marchese, Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow
- Carlos Matheus, Jean-Christophe Yoccoz, David Zmiaikou, Homology of origamis with symmetries
- Artur Avila, Sébastien Gouëzel, Jean-Christophe Yoccoz, Exponential mixing for the Teichmüller flow
- Raphaël Krikorian, Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich
- Boris Adamczewski, Codages de rotations et phénomènes d'autosimilarité
- Sébastien Ferenczi, Luca Q. Zamboni, Eigenvalues and simplicity of interval exchange transformations
- Sébastien Ferenczi, A generalization of the self-dual induction to every interval exchange transformation
- Anne Broise-Alamichel, Yves Guivarc'h, Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée